Skip to main content

Creep in Modern Materials

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Cold flow; Rheological activity of materials; Time-dependent permanent strain

Definitions

Creep is the permanent deformation of a material occurring under a load, increasing over time. A quantitative measure of the creep process creep is most commonly a mathematical relationship, associating the magnitude of creep deformation with parameters such as time, temperature, and stress.

Modern materials, especially modern metallic materials are multicomponent alloys, where, with a fixed chemical composition, it is possible to consciously control (to a certain extent) macroscopic properties of the material through operations such as plastic deformation and heat treatment. Also, the susceptibility of modern materials to creep can be, to some extent, changed by the chemical composition or the previously mentioned operations.

Introduction

Modern functional materials usually belong to groups of metallic, ceramic, polymer materials or mixtures thereof (composites). Metallic materials are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bakshi UA, Bakshi MV (2009) Transmission and distribution. Technical Publications, Pune

    MATH  Google Scholar 

  • Campbel FC (2012) Phase diagrams: understanding the basics. ASM International, Materials Park

    Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford

    Google Scholar 

  • Harocopos B (1963) Principles of structural metallurgy. London Iliffe Books Ltd, London

    Google Scholar 

  • Hatch JE (ed) (1984) Aluminum properties and physical metallurgy. ASM International

    Google Scholar 

  • Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A65:350–354

    Google Scholar 

  • Hsieh CL, Tuana WH, Wu TT (2004) Elastic behaviour of a model two-phase material. J Eur Ceram Soc 24:3789–3793

    Article  Google Scholar 

  • Kasap SO (2017) Springer handbook of electronic and photonic materials. Springer Handbooks, Cham

    Book  Google Scholar 

  • Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in metals and alloys. Elsevier Science, Amsterdam

    Google Scholar 

  • Kiessling F, Nefzger P, Nolasco JF, Kaintzyk U (2003) Overhead power lines. Springer, Berlin

    Book  Google Scholar 

  • Knych T, Mamala A, Smyrak B (2009) Phenomenology of the creep process of a precipitation-hardenable AlMgSi alloy wires for overhead power lines. Experimental tests. Simulation. Mech Time-Depend Mater 13:163–181

    Article  Google Scholar 

  • Landauer R (1965) The electrical resistance of binary metallic mixtures. J Appl Phys 23:779–785

    Article  Google Scholar 

  • Olafsson P, Sandstrom R, Karlsson A (1997) Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J Mater Sci 32:4383–4390

    Article  Google Scholar 

  • Rossiter PL (2003) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge

    Google Scholar 

  • Taylor RE (1998) Thermal expansion of solids. ASM International, Materials Park

    Google Scholar 

  • Turner J (1946) Thermal-expansion stresses in reinforced plastics. J Res Natl Bur Stand 37:239–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Knych .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Knych, T., Mamala, A., Smyrak, B. (2018). Creep in Modern Materials. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_224-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_224-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics