Skip to main content

Effective Variables and Damage Effect Functions

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Hypotheses of mechanical equivalence; Internal state variables

Definitions

Continuum mechanics (CM) approach provides the constitutive and evolution equations in the framework of thermodynamics of irreversible processes. Within this approach a specific portion of the physical universe (a specific quantity of matter) is considered, which is called a thermodynamic system, and no exchange of matter through the boundary of the system is assumed. The energy exchange between the system and its exterior is an exchange of heat and work done by volume forces or surface forces acting upon the system. In order to fully define the thermodynamic state of a system that is subjected to energy dissipation, a set of internal variables is introduced (in addition to strains and temperature), which describe the rearrangements of the internal structure, accompanied by dissipation. The choice of those so-called internal state variables depends on which phenomenon is accounted for in the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Basaran C, Nie S (2004) An irreversible thermodynamics theory for damage mechanics of solids. Int J Damage Mech 13:205–223

    Article  Google Scholar 

  • Basaran C, Yan C (1998) A thermodynamic framework for damage mechanics of solter joints. J Electron Packag 120:379–384

    Article  Google Scholar 

  • Besson J, Cailletaud G, Chaboche J, Forest S (2001) Mécanique non linéaire des matériaux. Hermès, Paris

    MATH  Google Scholar 

  • Cauvin A, Testa RB (1999) Damage mechanics: basic variables in continuum theories. Int J Solids Struct 36:747–761

    Article  MathSciNet  MATH  Google Scholar 

  • Chaboche J (1977) Sur l’utilisation des variables d’état interne pour la description du comportement viscoplastique et de la rupture par endommagement. In: Nowacki W (ed) Problèmes

    Google Scholar 

  • Chaboche J (1982) The concept of effective stress applied to elasticity and to viscoplasticity in the presence of anisotropic damage. In: Boehler J (ed) Mechanical behavior of anisotropic solids. Martinus Nijhoff, The Hague, pp 737–760

    Google Scholar 

  • Chaboche J (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329

    Article  Google Scholar 

  • Chaboche J (1997) Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int J Solids Struct 34:2239–2254

    Article  MATH  Google Scholar 

  • Chaboche J (1999) Thermodynamically founded CDM models for creep and other conditions. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures. Springer, Viena, pp 209–278

    Chapter  MATH  Google Scholar 

  • Chaboche J, Lesne P, Maire J (1995) Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int J Damage Mech 4:5–22

    Article  Google Scholar 

  • Chen X, Chow C (1995) On damage strain energy release rate. Int J Damage Mech 4:251–263

    Article  Google Scholar 

  • Chow C, Lu T (1989) A normative presentation of stress and strain for continuum damage mechanics. Theor Appl Fract Mech 12:161–187

    Article  Google Scholar 

  • Chow C, Wang J (1987) An anisotropic theory of continuum damage mechanics for ductile fracture. Eng Fract Mech 27:547–558

    Article  Google Scholar 

  • Cordebois J, Sidoroff F (1982) Endommagement anisotrope en élasticité et plasticité. Journal de Mécanique Théorique et Appliquée pp 45–60

    Google Scholar 

  • Cordebois J, Sidoroff F (1983) Damage induced elastic anisotropy. In: Boehler J (ed) Mechanical behavior of anisotropic solids. Martinuus Nijhoff Publisher, Boston, pp 761–774

    Google Scholar 

  • Egner H (2012) On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. Int J Solids Struct 49:279–288

    Article  Google Scholar 

  • Egner H, Egner W (2015) Classification of constitutive equations for dissipative materials – general review. In: Skrzypek J, Ganczarski A (eds) Mechanics of anisotropic materials. Springer International Publishing, Heidelberg, pp 247–294

    Chapter  MATH  Google Scholar 

  • Egner H, Ryś M (2017) Total energy equivalence in constitutive modeling of multidissipative materials. Int J Damage Mech 26:417–446

    Article  Google Scholar 

  • Egner H, Skoczeń B, Ryś M (2015) Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures. Int J Plast 64:113–133

    Article  Google Scholar 

  • Fischer F, Oberaigner E, Tanaka K (1997) A micromechanical approach to constitutive equations for phase changing materials. Comput Mater Sci 9:56–63

    Article  Google Scholar 

  • Ganczarski A, Egner H, Muc A, Skrzypek J (2010) Constitutive models for analysis and design of multifunctional technological materials. In: Rustichelli F, Skrzypek J (eds) Innovative technological materials: structural properties by neutron scattering, synchrotron radiation and modeling. Springer, Berlin, pp 179–223

    Chapter  Google Scholar 

  • Gomez J, Basaran C (2006) Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening and rate dependent effects using a return mapping integration algorithm. Mech Mater 38:585–598

    Article  Google Scholar 

  • Gurson A (1977) Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99:2–15

    Article  Google Scholar 

  • Hallberg H, Hakansson P, Ristinmaa M (2007) A constitutive model for the formation of martensite in austenitic steels under large strain plasticity. Int J Plast 23:1213–12398

    Article  MATH  Google Scholar 

  • Iwamoto T (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. Int J Plast 20:841–869

    Article  MATH  Google Scholar 

  • Kachanov L (1958) On rupture time under condition of creep. Izvestia Akademi Nauk SSSR 8:26–31

    Google Scholar 

  • Kachanov L (1974) Foundations of fracture mechanics. Izdatielistvo Nauka, Moscow

    Google Scholar 

  • Kachanov M (1980) Continuum model of medium with cracks. J Eng Mech Div 5:1039–1051

    Google Scholar 

  • Kachanov L (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dordrecht

    Book  MATH  Google Scholar 

  • Kowalsky U, Ahrens H, Dinkler D (1999) Distorted yield surfaces-modelling by higher order anisotropic hardening tensors. Comput Mater Sci 16:81–88

    Article  Google Scholar 

  • Lemaitre J (1971) Evaluation of dissipation and damage in metals. In: Proceedings of international conference on the mechanical behavior of materials 1 (ICM 1), Kyoto

    Google Scholar 

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin/New York

    Book  MATH  Google Scholar 

  • Lemaitre J, Chaboche J (1978) Aspect phénoménologique de la rupture par endommagement. Journal de Mécanique Appliquée 2:317–365

    Google Scholar 

  • Lubarda V, Krajcinovic D (1993) Damage tensors and the crack density distribution. Int J Solids Struct 30:2859–2877

    Article  MATH  Google Scholar 

  • Mahnken R, Schneidt A, Antretter T, Ehlenbröker U, Wolff M (2015) Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels. Int J Solids Struct 54:156–171

    Article  Google Scholar 

  • Maugin G (1999) The thermomechanics of nonlinear irreversible behaviors, an introduction. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  • Murakami S (1988) Mechanical modeling of material damage. J Appl Mech 55:280–286

    Article  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer, Berlin

    Book  Google Scholar 

  • Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Ponter A, Hayhurst D (eds) Creep in structures. Springer, Viena, pp 422–444

    Chapter  Google Scholar 

  • Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rabotnov Y (1968) Creep rupture. In: Hetenyi M, Vincenti M (eds) Proceedings of applied mechanics conference. Springer, Berlin, pp 342–349

    Google Scholar 

  • Rabotnov Y (1969) Creep problems in structural members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  • Saanouni K (2012) Damage mechanics in metal forming: advanced modeling and numerical simulation. ISTE/Wiley, London

    Book  Google Scholar 

  • Saanouni K, Forster C, Ben Hatira F (1994) On the anelastic flow with damage. Int J Damage Mech 3:140–169

    Article  MATH  Google Scholar 

  • Simo J, Ju J (1987) Strain- and stress-based continuum damage models. I – Formulation, II – Computational aspects. Int J Solids Struct 23:821–869

    Article  MATH  Google Scholar 

  • Skrzypek J, Ganczarski A (1999) Modeling of material damage and failure of structures. Springer, Berlin

    Book  MATH  Google Scholar 

  • Skrzypek J, Kuna-Ciskał H (2003) Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamics. In: Skrzypek J, Ganczarski A (eds) Anisotropic behaviour of damaged materials. Springer, Berlin, pp 143–184

    Chapter  MATH  Google Scholar 

  • Voyiadjis GZ, Kattan P (1999) Advances in damage mechanics: metals and metal matrix composites. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Voyiadjis G, Kattan P (2007) Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I-theory and fundamental concepts. Mech Res Commun 34:145–154

    Article  MATH  Google Scholar 

  • Yao W, Basaran C (2013) Computational damage mechanics of electromigration and thermomigration. J Appl Phys 114:103708

    Article  Google Scholar 

  • Yun-bing L, Xing-fu C (1989) The order of a damage tensor. Appl Math Mech 3:251–258

    Article  MathSciNet  Google Scholar 

  • Zheng Q, Betten J (1996) On damage effective stress and equivalence hypothesis. Int J Damage Mech 5:219–240

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre through the Grant No. 2017/25/B/ST8/02256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egner Halina .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Halina, E., Władysław, E. (2019). Effective Variables and Damage Effect Functions. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_228-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_228-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics