Skip to main content

Elastic Waves in Microstructured Solids

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 242 Accesses

Synonyms

Deformable body ; Dispersion; Heterogeneity; Microscale; Wave motion

Definitions

  • Microstructure has no universal definition. In solids it is formed by grains, phases, interfaces, regular or irregular inclusions, etc. Microstructures appear at different length scales and often coexist at more than one length scale within the same solid. In continuum mechanics, no atomic or molecular structure of a material is considered. For waves, the main physical effect caused by microstructure is the wave dispersion.

  • Wave dispersion means that phase and group velocities of propagating waves are dependent on their frequency or wave number.

Background

In many cases the assumption of homogeneity of materials does not work. The behavior of many materials of engineering interest, such as alloys, composites, functionally graded materials, etc., is often influenced by an existing or emergent microstructure. In general, components of such a microstructure have different material properties,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achenbach J (1973) Wave propagation in elastic solids. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Andrianov IV, Awrejcewicz J, Weichert D (2010) Improved continuous models for discrete media. Math Probl Eng 2010:986242

    Article  MATH  Google Scholar 

  • Askes H, Metrikine AV, Pichugin AV, Bennett T (2008) Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Philos Mag 88(28–29):3415–3443

    Article  Google Scholar 

  • Berezovski A, Engelbrecht J, Berezovski M (2011) Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech 220(1–4):349–363

    Article  MATH  Google Scholar 

  • Born M, von Kármán T (1912) Ãœber Schwingungen und Raumgitter. Phys Z 13:297–309

    MATH  Google Scholar 

  • Brillouin L (1946) Wave propagation in periodic structures: electric filters and crystal lattices. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Brillouin L (1960) Wave propagation and group velocity. Academic, New York

    MATH  Google Scholar 

  • Chen W, Fish J (2001) A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. Trans Am Soc Mech Eng J Appl Mech 68(2):153–161

    Article  MATH  Google Scholar 

  • Chen Y, Lee JD (2003) Determining material constants in micromorphic theory through phonon dispersion relations. Int J Eng Sci 41(8):871–886

    Article  Google Scholar 

  • Chen Y, Lee JD, Eskandarian A (2003) Examining the physical foundation of continuum theories from the viewpoint of phonon dispersion relation. Int J Eng Sci 41(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Engelbrecht J, Pastrone F (2003) Waves in microstructured solids with nonlinearities in microscale. Proc Estonian Acad Sci Phys Math 52(1):12–20

    MathSciNet  MATH  Google Scholar 

  • Engelbrecht J, Berezovski A, Pastrone F, Braun M (2005) Waves in microstructured materials and dispersion. Philos Mag 85(33–35):4127–4141

    Article  MATH  Google Scholar 

  • Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids – I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  • Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  • Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int J Numer Methods Eng 54(3):331–346

    Article  MathSciNet  MATH  Google Scholar 

  • Gilormini P, Bréchet Y (1999) Syntheses: mechanical properties of heterogeneous media: which material for which model? Which model for which material? Model Simul Mater Sci Eng 7(5):805–816

    Article  Google Scholar 

  • Gonella S, Greene MS, Liu WK (2011) Characterization of heterogeneous solids via wave methods in computational microelasticity. J Mech Phys Solids 59(5): 959–974

    Article  MATH  Google Scholar 

  • Graff KF (1975) Wave motion in elastic solids. Oxford University Press, London

    MATH  Google Scholar 

  • Love AEH (1944) A treatise on the mathematical theory of elasticity. Dover Publications, New York

    MATH  Google Scholar 

  • Maugin GA (1994) Physical and mathematical models of nonlinear waves in solids. In: Nonlinear waves in solids. Springer, Wien, pp 109–233

    Chapter  Google Scholar 

  • Maugin GA (1999) Nonlinear waves in elastic crystals. Oxford University Press, New York

    MATH  Google Scholar 

  • Metrikine AV (2006) On causality of the gradient elasticity models. J Sound Vib 297(3):727–742

    Article  MathSciNet  MATH  Google Scholar 

  • Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: part 1: generic formulation. Eur J Mech A Solids 21(4):555–572

    Article  MATH  Google Scholar 

  • Miklowitz J (1978) The theory of elastic waves and waveguides. North-Holland, Amsterdam/New York

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD, Eshel N (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124

    Article  MATH  Google Scholar 

  • Polyzos D, Fotiadis D (2012) Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models. Int J Solids Struct 49(3):470–480

    Article  Google Scholar 

  • Rosenau P (1988) Dynamics of dense discrete systems. High order effects. Prog Theor Phys 79(5):1028–1042

    Article  Google Scholar 

  • Santosa F, Symes WW (1991) A dispersive effective medium for wave propagation in periodic composites. SIAM J Appl Math 51(4):984–1005

    Article  MathSciNet  MATH  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer Science & Business Media, New York

    Book  MATH  Google Scholar 

  • Wang ZP, Sun C (2002) Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36(4):473–485

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Berezovski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Berezovski, A. (2018). Elastic Waves in Microstructured Solids. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_231-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_231-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics