Skip to main content

Thermoelastic Waves

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 44 Accesses

Synonyms

Hyperbolic theories; Maxwell-Cattaneo; Relaxation times; Thermoelasticity; Waves

Definitions

Thermoelastic waves are disturbances involving thermal and elastic fields, typically stemming from the coupling of constitutive equations at the local continuum level. Depending on basic postulates and physical applications, there exist various types of such waves.

Introduction

Thermoelastic waves can be viewed as an extension of elastic waves of isothermal elastodynamics accounting for the interactions between thermal and mechanical fields in the interior of a body due to an external thermomechanical load. From a mathematics’ perspective, they can also be defined as solutions to initial-boundary value problems of a hyperbolic thermoelastodynamics (HT). Various theories of HT have been proposed in the literature since the late 1960s, followed by a milestone book of Nowacki (1975), the first fundamental monograph on dynamic thermoelasticity. Both the linear and nonlinear thermoelastic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achenbach JD (1968) The influence of heat conduction on propagating stress jumps. J Mech Phys Solids 16:273–282

    Article  Google Scholar 

  • Bagri A, Eslami MR (2007a) A unified generalized thermoelastic formulation; applications to thick functionally graded cylinders. J Thermal Stress 30:911–930

    Article  Google Scholar 

  • Bagri A, Eslami MR (2007b) A unified generalized thermoelasticity: solution for cylinders and spheres. Int J Mech Sci 49:1325–1335

    Article  Google Scholar 

  • Brock LM (2005) Thermal relaxation effects in rapid sliding contact with friction. Acta Mech 176:185–196

    Article  Google Scholar 

  • Brock LM (2006) Debonding of a thermoelastic material from a rigid substrate at any constant speed: thermal relaxation effects. Acta Mech 184:185–196

    Article  Google Scholar 

  • Brock LM (2008) Stoneley signals in perfectly bonded dissimilar thermoelastic half-spaces with and without thermal relaxation. J Mech Mater Struct 2(9):1723–1742

    Article  Google Scholar 

  • Carbonaro B, Ignaczak J (1987) Some theorems in temperature-rate dependent thermoelasticity for unbounded domains. J Thermal Stress 10:193–220

    Article  MathSciNet  Google Scholar 

  • Chandrasekharaiah DS (1996a) A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J Thermal Stress 19:267–272

    Article  MathSciNet  Google Scholar 

  • Chandrasekharaiah DS (1996b) One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. J Thermal Stress 19:695–710

    Article  MathSciNet  Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729

    Article  Google Scholar 

  • Ezzat MA, El-Karamany AS, El-Bary AA (2016) Modeling of memory-dependent derivative in generalized thermoelasticity. Eur Phys J Plus 131(372):1–12

    Google Scholar 

  • Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  Google Scholar 

  • Gurtin ME (1972) The linear theory of elasticity. In: Encyclopedia of physics, mechanics of solids II, VIa/2, Springer-Verlag, Berlin

    Google Scholar 

  • Hetnarski RB, Ignaczak J (1993) Generalized thermoelasticity: closed-form solutions. J Thermal Stress 16:473–498

    Article  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (1994) Generalized thermoelasticity: response of semi-space to a short laser pulse. J Thermal Stress 17:377–396

    Article  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (1996) Soliton-like waves in a low-temperature nonlinear thermoelastic solid. Int J Eng Sci 34:1767–1787

    Article  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (1997) On soliton-like thermoelastic waves. Appl Anal 65:183–204

    Article  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37:215–224

    Article  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (2011) The mathematical theory of elasticity, 2nd edn. CRC Press/Taylor and Francis Group, Boca Raton

    MATH  Google Scholar 

  • Iesan D (1998) On the theory of thermoelasticity without energy dissipation. J Thermal Stress 21:295–307

    Article  MathSciNet  Google Scholar 

  • Ignaczak J (1978) Decomposition theorem for thermoelasticity with finite wave speeds. J Thermal Stress 1:41–52

    Article  Google Scholar 

  • Ignaczak J (1989) Generalized thermoelasticity and its applications. In: Hetnarski RB (ed) Thermal stresses III. Elsevier, New York, pp 279–354

    Google Scholar 

  • Ignaczak J (1990) Soliton-like solutions in a nonlinear dynamic coupled thermoelasticity. J Thermal Stress 13:73–98

    Article  MathSciNet  Google Scholar 

  • Ignaczak J (2014) Domain of influence theorems in generalized thermoelasticity, encyclopedia of thermal stresses, vol 2. Springer, Dordrecht, pp 996–1003

    Book  Google Scholar 

  • Ignaczak J, Domanski W (2017) An asymptotic approach to one-dimensional model of nonlinear thermoelasticity at low temperatures and small strains. J Thermal Stress 40:1030–1039

    Article  Google Scholar 

  • Ignaczak J, Hetnarski RB (2014) Generalized thermoelasticity: mathematical formulation, encyclopedia of thermal stresses, vol 4. Springer, Dordrecht, pp 1974–1986

    Google Scholar 

  • Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ignaczak J, Carbonaro B, Russo R (1986) Domain of influence theorem in thermoelasticity with one relaxation time. J Thermal Stress 9:79–91

    Article  MathSciNet  Google Scholar 

  • Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 62:41–73

    Article  MathSciNet  Google Scholar 

  • Joseph DD, Preziosi L (1990) Addendum to the paper: heat waves. Rev Mod Phys 62:375–391

    Article  Google Scholar 

  • Karamany AS, Ezzat MA (2016) On the phase-lag Green-Naghdi thermoelasticity theories. Appl Math Model 40:5643–5659

    Article  MathSciNet  Google Scholar 

  • Nappa L (1998) Spatial decay estimates for the evolution equations of linear thermoelasticity without energy dissipation. J Thermal Stress 21:581–592

    Article  MathSciNet  Google Scholar 

  • Nowacki W (1975) Dynamic problems of thermoelasticity. In: Francis PH, Hetnarski RB (eds) Noordhoff Int. Publ. Leyden & PWN-Polish Scientific Publishers, Warsaw

    Google Scholar 

  • Ostoja-Starzewski M (2014) Viscothermoelasticity with finite wave speeds: thermomechanical laws. Acta Mech 225(4–5):1277–1285

    Article  MathSciNet  Google Scholar 

  • Ostoja-Starzewski M, Khayat RE (2017) Oldroyd fluids with hyperbolic heat conduction. Mech Res Comm, online, 2017 https://doi.org/10.1016/j.mechrescom.2017.07.012

  • Ostoja-Starzewski M, Costa L, Ranganathan SI (2015) Scale-dependent homogenization of random hyperbolic thermoelastic solids. J Elast 118:243–250

    Article  MathSciNet  Google Scholar 

  • Quintanilla R (2009) Spatial behavior of solutions of the three-phase-lag heat equation. Appl Math Comput 213:153–162

    MathSciNet  MATH  Google Scholar 

  • Suh CS, Burger CP (1998a) Thermoelastic modeling of laser-induced stress-waves in plates. J Thermal Stress 21:829–847

    Article  Google Scholar 

  • Suh CS, Burger CP (1998b) Effects of thermomechanical coupling and relaxation times on wave spectrum in dynamic theory of generalized thermoelasticity. J Appl Mech 65:605–613

    Article  Google Scholar 

  • Tamma KK, Zhou X (1998) Macroscale and microscale thermal transport and thermomechanical interactions: some noteworthy perspectives. J Thermal Stress 21:405–449

    Article  Google Scholar 

  • Tzou DY (1995) A unified approach for heat conduction from macro to micro-scales. J Heat Transf 117:8–16

    Article  Google Scholar 

Download references

Acknowledgment

Expert comments of J. Ignaczak helped improve this chapter. This work has partially been supported by the NSF under grant CMMI-1462749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ostoja-Starzewski, M. (2018). Thermoelastic Waves. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_233-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_233-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics