Skip to main content

Dynamics and Thermodynamics of Fracture Mechanics

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

High rate and short pulse fracture mechanics

Definition

Dynamic fracture is a process of fragmentation of continuum at small time scales under rapidly applied loads and is characterized by a number of specific effects that include significant influence of a time history of a force field and/or of inertia forces causing wave fields, which, in turn, can generate a complex pattern of a dynamic stress state.

Dynamic fracture mechanics is one of the most intriguing branches of mechanical engineering, as phenomena, encountered in this area often shed light on fundamental laws of mechanics and physics. As a result, it has attracted considerable attention from both engineering and academic communities. Dynamic fracture deals with processes at time scales, for which material inertia can have a significant effect on main phenomena (Freund 1990). The dynamic fracture process is characterized by a number of effects that are absent under slow static loadings. Such effects include, for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Berry JP (1960) Some kinetic considerations of the Griffith criterion for fracture. J Mech Phys Solids 8:194–216

    Article  Google Scholar 

  • Broberg KB (1964) On the speed of a brittle crack. J Appl Mech 31:546–547

    Article  Google Scholar 

  • Broberg KB (1989) The near-tip field at high crack velocities. Int J Fract 39:1–13

    Article  Google Scholar 

  • Charpy MG (1901) Note sur l’Essai des Metaux a la Flexion par Choc de Barreaux Entailles, Soc Ing Francais June 1901:848

    Google Scholar 

  • Dally JW (1979) Dynamic photoelastic studies of fracture. Exp Mech 19(10):349–361

    Article  Google Scholar 

  • Dally JW, Fourney WL, Irwin GR (1985) On the uniqueness of the stress intensity factor – crack velocity relationship. Int J Fract 27:159–168

    Article  Google Scholar 

  • Dulaney EN, Brace WF (1960) Velocity behavior of a growing crack. J Appl Mech 31:2233–2236

    MathSciNet  Google Scholar 

  • Fineberg J, Gross SP, Marder M, Swinney HL (1992) Instability in crack propagation. Phys Rev 45:5146–5154

    Article  Google Scholar 

  • Freund LB (1972a) Crack propagation in an elastic solid subjected to general loading. I: constant rate of extension. J Mech Phys Solids 20:129–140

    Article  Google Scholar 

  • Freund LB (1972b) Crack propagation in an elastic solid subjected to general loading. II: nonuniform rate of extension. J Mech Phys Solids 20:141–152

    Article  Google Scholar 

  • Freund LB (1972c) Energy flux into the tip of an extending crack in an elastic solid. J Elast 2:341–349

    Article  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Griffith A (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

  • Homma H, Shockey DA, Murayama Y (1983) Response of racks in structural materials to short pulse loads. J Mech Phys Solids 3(1):1–279

    Google Scholar 

  • Irwin G (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kalthoff JF (1985) On the measurement of dynamic fracture toughness – a review of recent work. Int J Fract 27:277–298

    Article  Google Scholar 

  • Kalthoff JF (2000) Modes of dynamic shear failure in solids. Int J Fract 101:1–31

    Article  Google Scholar 

  • Kalthoff JF, Shockey DA (1977) Instability of cracks under impulse loads. J Appl Phys 48:986–993

    Article  Google Scholar 

  • Kalthoff JF, Beinert J, Winkler S (1977) Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam Specimens. In: Hahn GT and Kanninen MF (eds) American society for testing and materials. ASTM STP 627 – Fast fracture and crack arrest, Philadelphia, pp 161–176

    Google Scholar 

  • Kerkhof F (1973) Wave fractographic investigation of brittle fracture dynamics. In: Sih GC (ed) Dynamic crack propagation. Noordhoff International Publishing, Leyden, pp 3–35

    Chapter  Google Scholar 

  • Kirugulige MS, Tippur HV, Denney TS (2007) Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture. Appl Opt 46:5083–5096

    Article  Google Scholar 

  • Kobayashi T, Dally JW (1977) Relation between crack velocity and the stress intensity factor in birefringent polymers. In: Hahn GT and Kanninen MF (eds) American society for testing and materials. Fast fracture and crack arrest. ASTM STP 627, Philadelphia, pp 257–273

    Google Scholar 

  • Kobayashi AS, Wade BG, Bradley WB, Chiu ST (1974) Crack branching in Homalite-100 plates. Eng Fract Mech 6:81–92

    Article  Google Scholar 

  • Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond Sect B 62 II-B:676–700

    Article  Google Scholar 

  • Kostrov BV (1975) Crack propagation at variable velocity. Int J Fract 11(1):47–56

    Article  MathSciNet  Google Scholar 

  • LeChatalier A (1892) On the fragility after immersion in a cold fluid. French Testing Commission, vol 3

    Google Scholar 

  • Maigre H, Rittel D (1995) Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen. Int J Fract 73:67–79

    Article  Google Scholar 

  • Morozov NF, Petrov YV (2000) Dynamics of fracture. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Nishioka T, Atluri SN (1980) Numerical modeling of dynamic crack propagation in finite bodies, by moving singular elements: part 1: formulation. J Appl Mech 47:570–576

    Article  MathSciNet  Google Scholar 

  • Owen DM, Zhuang S, Rosakis AJ, Ravichandran G (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets. Int J Fract 90:153–174

    Article  Google Scholar 

  • Petrov YV (1991) On “quantum” nature of dynamic failure of brittle media. Dokl Akad Nauk SSSR 321:66–68

    Google Scholar 

  • Petrov YV, Morozov NF (1994) On the modeling of fracture of brittle solids. J Appl Mech 61:710–712

    Article  Google Scholar 

  • Petrov YV, Utkin AA (1989) Dependence of the dynamic strength on loading rate. Mater Sci 25(2):153–156

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int J Fract 25:247–262

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984b) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26:65–80

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984c) An experimental investigation into dynamic fracture: III. On steady state crack propagation and crack brunching. Int J Fract 26:141–154

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984d) An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks. Int J Fract 26:189–200

    Article  Google Scholar 

  • Rosakis AJ, Ravichandran G (2000) Dynamic failure mechanics. J Mech Mater Struct 37:331–348

    MATH  Google Scholar 

  • Rosakis AJ, Duffy J, Freund LB (1984a) The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method. J Mech Phys Solids 32(4):443–460

    Article  Google Scholar 

  • Rosakis AJ, Duffy J, Freund LB (1984b) The determination of the dynamic fracture toughness of AISI 4340 steel by the shadow spot method. J Mech Phys Solids 34:443–460

    Article  Google Scholar 

  • Russell SB (1898) Experiments with a new machine for testing materials by impact. Trans ASCE 39:237

    Google Scholar 

  • Schardin H, Struth W (1938) Hochfrequenzkinematographische Untersuchung der Bruchvorgänge in Glas. Glastech Ber 16:219

    Google Scholar 

  • Shukla A, Nigam H (1986) A note on the stress intensity factor and crack velocity relationship for Homalite 100. Eng Fract Mech 25(1):91–102

    Article  Google Scholar 

  • Wallner H (1938) Linienstrukturen an Bruchflächen. Z Physik 114:368–370

    Article  Google Scholar 

  • White AE, Clark CL (1925) Bibliography of impact testing. University of Michigan, Department of Engineering Research

    Google Scholar 

  • Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  • Yoffe EH (1951) The moving Griffith crack. Philos Mag 42:739–750

    Article  MathSciNet  Google Scholar 

  • Zehnder AT, Rosakis AJ (1990) Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int J Fract 43:271–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri V. Petrov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Petrov, Y.V., Silberschmidt, V.V. (2018). Dynamics and Thermodynamics of Fracture Mechanics. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics