Skip to main content

Deactivation of Damage Effects

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Microcrack opening/closure effect

Definitions and Literature Survey

The phenomenon of the unilateral damage, also called the damage deactivation or the crack closure/opening effect, is typical for materials subjected to reverse tension-compression cycles. In the simplest one-dimensional case, if the loading is reversed from tension to compression, the cracks will completely close such that the material behaves as uncracked or, in other words, its initial stiffness is recovered. The mathematical description of unilateral damage is based on the decomposition of the stress or strain into the positive and negative projections; see Ladeveze and Lemaitre (1992), Litewka (1991), Mazars (1986), Krajcinovic (1996), Saanouni et al. (1994), and Saanouni and Abdul-Latif (1996). In the simplest case, the damage modified stress or strain is used, based on the concept of the Heaviside function, where the negative principal components are ruled out. This means that the negative principal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdul-Latif A, Chadli M (2007) Modeling of the heterogeneous damage evolution at the granular scale in polycrystals under complex cyclic loadings. Int J Damage Mech 16:133–158

    Article  Google Scholar 

  • Brocks W, Steglich D (2003) Damage models for cyclic plasticity. In: Advances in fracture and damage mechanics. Trans Tech Publications, Zürich, pp 389–398

    Google Scholar 

  • Cegielski M (2012) Effect of continuous damage deactivation in CDM. Ph.D thesis, Cracow University of Technology, Kraków, Poland (in Polish)

    Google Scholar 

  • Chaboche JL (1992) Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int J Damage Mech 1:148–171

    Article  Google Scholar 

  • Chaboche JL (1993) Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int J Damage Mech 2:311–329

    Article  Google Scholar 

  • Chaboche JL, Lesne P, Moire J (1995) Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int J Damage Mech 4:5–21

    Article  Google Scholar 

  • Ganczarski A, Barwacz L (2007) Low cycle fatigue based on unilateral damage evolution. Int J Damage Mech 16:159–177

    Article  Google Scholar 

  • Ganczarski A, Cegielski M (2007a) Effect of continuous damage deactivation. In: Proceedings of the IV international symposium on damage mechanics of materials and structures, Augustów

    Google Scholar 

  • Ganczarski A, Cegielski M (2007b) Effect of continuous damage deactivation. Acta Mech Automat 1:35–38

    Google Scholar 

  • Halm D, Dragon A (1996) A model of anisotropic damage by mesocrack growth; unilateral effect. Int J Damage Mech 5:384–402

    Article  MATH  Google Scholar 

  • Halm D, Dragon A (1998) An anisotropic model of damage and frictional sliding for brittle materials. Eur J Mech A/Solids 17:439–460

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen N, Schreyer H (1995) Damage deactivation. Trans ASME 62:450–458

    Article  Google Scholar 

  • Hayakawa K, Murakami S (1997) Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int J Damage Mech 6:333–363

    Article  Google Scholar 

  • Ju J (1989) On energy based coupled elastoplastic damage theories: constitutive modeling and computational aspect. Int J Solids Struct 25:803

    Article  MATH  Google Scholar 

  • Krajcinovic D (1996) Damage mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Krajcinovic D, Fonseka G (1981) The continuous damage theory of brittle materials, part I and II. J Appl Mech ASME 18:809–824

    Article  MATH  Google Scholar 

  • Ladeveze P, Lemaitre J (1992) Damage effective stress in quasi-unilateral conditions. In: Proceedings of the IUTAM congress 1984, Lyngby

    Google Scholar 

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lemaitre J, Chaboche JL (1985) Mécanique des matériaux solides. Bordas, Paris

    Google Scholar 

  • Litewka A (1991) Creep damage and creep rupture of metals. Wyd Polit Poznańskiej, Poznań

    Google Scholar 

  • Mazars J (1986) A model of unilateral elastic damageable material and its application to concrete. In: Energy toughness and fracture energy of concrete. Elsevier, Amsterdam, pp 61–71

    Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture. Springer, Berlin

    Book  Google Scholar 

  • Murakami S, Kamiya K (1997) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Solids Struct 39:473–486

    MATH  Google Scholar 

  • Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4:67–93

    Article  Google Scholar 

  • Ramtani S (1990) Contribution á la modelisation du comportement multiaxial du beton endommagé avec description du caractere unilateral. Ph.D thesis, University of Paris VI

    Google Scholar 

  • Saanouni K, Abdul-Latif A (1996) Micromechanical modeling of low cycle fatigue under complex loadings-part I: theoretical formulation. Int J Plast 12:111

    Article  MATH  Google Scholar 

  • Saanouni K, Forster C, Benhatira F (1994) On the anelastic flow with damage. Int J Damage Mech 3:140

    Article  Google Scholar 

  • Simo J, Ju J (1987) Strain- and stress-based continuum damage models. I – formulation, II – computational aspects. Int J Solids Struct 23:821–869

    Article  MATH  Google Scholar 

  • Skrzypek J, Kuna-Ciskał H (2003) Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamic. In: Skrzypek J, Ganczarski A (eds) Anisotropic behaviour of damaged materials. Springer, Berlin, pp 143–184

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Ganczarski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganczarski, A., Egner, H., Cegielski, M. (2019). Deactivation of Damage Effects. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_256-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_256-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics