Skip to main content

Frameworks for Material Modeling

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 74 Accesses

Synonyms

Elasticity; Plasticity; Reduced forms; Viscosity

Definition

Frameworks for material modeling set the limits within which different material phenomena like elasticity, plasticity, and viscosity are modeled.

Classification of Material Models

After establishing a universal framework for material modeling based on general principles, a classification of materials with respect to the material phenomena that occur is reasonable.

Any textbook on material modeling somehow classifies material models, however the works of Noll (1972) and Krawietz (1986) provide the most systematic approaches. Krawietz (1986) regards phenomenological material modeling by defining process classes and output functionals. The output functional is the material model, which assigns a dependent variable (stresses and forces) to the independent, process-controlled variable (strains and displacements).

We have already established the use of a finite-dimensional material state variable Z (see section “Principles...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeyaratne R, Knowles J (2006) Evolution of phase transitions – a continuum theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baker M, Ericksen J (1954) Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids. J Wash Acad Sci 44:33–35

    MathSciNet  Google Scholar 

  • Ball J (1977) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63:337–403

    Article  MathSciNet  Google Scholar 

  • Bertram A (2012) Elasticity and plasticity of large deformations – an introduction, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Bertram A, Böhlke T, Šilhavý M (2007) On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J Elast 86:235–243

    Article  MathSciNet  Google Scholar 

  • Bona A, Bucataru I, Slawinski M (2004) Material symmetry of elasticity tensors. Q J Mech Appl Math 57:583–598

    Article  Google Scholar 

  • Ciarlet P (1988) Mathematical elasticity volume 1: three-dimensional elasticity. Studies in mathematics and its applications, vol 20. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  • Dunne F, Petrinic N (2009) Introduction to computational plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Forte S, Vianello M (1996) Symmetry classes for elasticity tensors. J Elast 43(2):81–108

    Article  MathSciNet  Google Scholar 

  • Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39:607–609

    Article  Google Scholar 

  • Krawietz A (1986) Materialtheorie. Springer, Berlin

    Book  Google Scholar 

  • Landau L, Lifshitz E, Kosevich A, Pitaevskii L (1986) Theory of elasticity. Course of theoretical physics, vol 7. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Morrey C (1952) Quasi-convexity and the lower semicontinuity of multiple integrals. Pac J Math 2(1):25–53

    Article  MathSciNet  Google Scholar 

  • Noll W (1972) A new mathematical theory of simple materials. Arch Ration Mech Anal 48:1–50

    Article  MathSciNet  Google Scholar 

  • Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67(3):350–362

    Article  MathSciNet  Google Scholar 

  • Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211

    Article  Google Scholar 

  • Saccomandi G, Ogden R (2004) Mechanics and thermomechanics of rubberlike solids. CISM international centre for mechanical sciences. Springer, Vienna

    Book  Google Scholar 

  • Schröder J (2010) Anisotropic polyconvex energies. In: Schröder J, Neff P (eds) Poly-, quasi- and rank-one convexity in applied mechanics. CISM international centre for mechanical sciences, vol 516. Springer, Vienna, pp 53–105

    Chapter  Google Scholar 

  • Simo J, Hughes T (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Taber L (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific, Singapore

    Book  Google Scholar 

  • Ting T (1996) Anisotropic elasticity: theory and applications. Oxford University Press, New York

    MATH  Google Scholar 

  • Truesdell CA, Noll W (1965) The non-linear field theories of mechanics. In: Flügge S (ed) Encyclopedia of physics, vol III/3. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Glüge .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Glüge, R. (2019). Frameworks for Material Modeling. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_263-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_263-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics