Skip to main content

Variational Formulations and Galerkin Methods for Strain Gradient Elasticity

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Energy methods; Gradient elasticity; Ritz–Galerkin methods; Weak form

Definitions

Variational formulations express pointwise differential boundary value problems (requiring n times continuously differentiable solutions) as weighted integral equations (with essentially less regular solutions), typically indicating a balance of internal and external energies. Galerkin methods search for approximate solutions for variational problems, as linear combinations of simple basis functions. Strain gradient elasticity theories generalize classical elasticity toward multi-scale modeling by incorporating higher-order displacement gradients into the strain and kinetic energies.

Introduction

Thin or thin-walled structures such as bars, beams, membranes, plates, and shells are the key structural components in engineering designs – practically at any length scale: load-bearing and facade structures in civil and mechanical engineering, as one extreme, and sensors and actuators of micro- and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altan BS, Aifantis EC (1997) On some aspects in the special theory of gradient elasticity. J Mech Behav Mater 8:231–282

    Article  Google Scholar 

  • Brenner SC, Scott LR (2008) The mathematical theory of finite element methods. Springer, New York

    Book  Google Scholar 

  • Cosserrat E, Cosserrat F (1909) Theorie des corps deformables. Hermann & Fils, Paris

    Google Scholar 

  • Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis toward integration of CAD and FEA. Wiley, Chichester

    Book  Google Scholar 

  • dell’Isola F, Madeo A, Seppecher P (2016) Cauchy tetrahedron argument applied to higher contact interactions. Arch Ration Mech Anal 219:1305–1341

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73:235409

    Article  Google Scholar 

  • Khakalo S, Niiranen J (2017) Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Comput Aided Des 82:154–169

    Article  MathSciNet  Google Scholar 

  • Khakalo S, Niiranen J (2018) Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano- to macro-scales. Eur J Mech A/Solids 71:292–319

    Article  MathSciNet  Google Scholar 

  • Khakalo S, Balobanov V, Niiranen J (2018) Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int J Eng Sci 127:33–52

    Article  MathSciNet  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  Google Scholar 

  • Lazar M, Maugin GA, Aifantis EC (2006) Dislocations in second strain gradient elasticity. Int J Solids Struct 43:1787–1817

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1: 417–438

    Article  Google Scholar 

  • Mindlin RD (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    Article  Google Scholar 

  • Nečas J, Hlaváček I (1981) Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Niiranen J, Niemi AH (2017) Variational formulation and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. Eur J Mech A/Solids 61:164–179

    Article  MathSciNet  Google Scholar 

  • Niiranen J, Khakalo S, Balobanov V, Niemi AH (2016) Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput Methods Appl Mech Eng 308:182–211

    Article  MathSciNet  Google Scholar 

  • Niiranen J, Balobanov V, Kiendl J, Hosseini SB (2017) Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models. Math Mech Solids. https://doi.org/10.1177/1081286517739669

    Google Scholar 

  • Polizzotto C (2013a) A second strain gradient elasticity theory with second velocity gradient inertia – Part I: constitutive equations and quasi-static behavior. Int J Solids Struct 50:3749–3765

    Article  Google Scholar 

  • Polizzotto C (2013b) A second strain gradient elasticity theory with second velocity gradient inertia – Part II: dynamic behavior. Int J Solids Struct 50:3766–3777

    Article  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–413

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Niiranen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Niiranen, J., Khakalo, S. (2018). Variational Formulations and Galerkin Methods for Strain Gradient Elasticity. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_268-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_268-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics