Skip to main content

History of Plasticity

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

A historical introduction into the theory of plasticity

Definitions

The theory of plasticity is an area of continuum mechanics that deals with the irreversible, i.e., permanent, deformations of solid bodies. It describes the state of stress and strain or strain rate in these bodies under the influence of a given load or deformation. This complements the theory of elasticity, which describes the reversible behavior of solid bodies. In practice it is observed that many materials behave elastic up to a certain load limit but then beyond this limit increasingly plastic or fluid-like. This limit is called the yield limit. The combination of both material behaviors is called elastoplasticity.

The classical elastoplastic material behavior is assumed to be time-independent or rate-independent. In contrast to this, we call a time- or rate-dependent behavior visco-elastoplastic and visco-plastic – if the elastic part of the deformation is neglected.

In the theory of plasticity and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect. Technical Report RD/B/N 731, GEGB

    Google Scholar 

  • Avitzur B (1968) Metal forming: processes and analysis. McGraw-Hill, New York

    Google Scholar 

  • Backman ME (1964) Form for the relation between stress and finite elastic and plastic strains under impulsive loading. J Appl Phys 35:2524–2533

    Article  Google Scholar 

  • Becker GF (1893) The finite elastic stress-strain function. Am J Sci 46:337–356

    Article  Google Scholar 

  • Bell JF, Khan AS (1980) Finite plastic strain in annealed copper during non-proportional loading. Int J Solids Struct 16:683–693

    Article  Google Scholar 

  • Bernstein B (1960) Hypo-elasticity and elasticity. Arch Rat Mech Anal 6:90–104

    MathSciNet  MATH  Google Scholar 

  • Bertram A (2005) Elasticity and plasticity of large deformations: an introduction. Springer, Berlin

    MATH  Google Scholar 

  • Bilby BA, Gardner LRT, Stroh AN (1957) Continuous distributions of dislocations and the theory of plasticity. In: Extrait des Actes du IXe Congrès Intern. de Mécanique Applicqueé, Bruxelles, pp 35–44

    Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw-Hill, New York

    Google Scholar 

  • Boas W, Schmid E (1930) Über die Temperaturabhängigkeit der Kristallplastizität. Z Physik A 61: 767–781

    Article  Google Scholar 

  • Böck N, Holzapfel GA (2004) A new two-point deformation tensor and its relation to the classical kinematical framework and the stress concept. Int J Solids Struct 41:7459–7469

    Article  MathSciNet  MATH  Google Scholar 

  • Boecke B, Link F, Schneider G, Bruhns OT (1982) New constitutive equations to describe infinitesimal elastic-plastic deformations. In: Proceedings of 2nd century PVP conference, Orlando, ASME 82-PVP-71, pp 1–6

    Google Scholar 

  • Bridgman PW (1964) Studies in large plastic flow and fracture. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Bruhns C (1920) Neues logarithmisch-trigonometrisches Handbuch auf sieben Decimalen, 13th edn. Bernhard Tauchnitz, Leipzig

    MATH  Google Scholar 

  • Bruhns O, Lehmann T (1979) Optimum deformation rate in large inelastic deformations. In: Lippmann H (ed) Metal forming plasticity. Springer, Berlin, pp 120–138

    Chapter  Google Scholar 

  • Bruhns OT (1984) On constitutive modelling of the inelastic behaviour of austenitic steel. In: Advanced technology of plasticity. Proceeding of 1st international conference on technology of plasticity, Tokyo. vol 1, pp 90–95

    Google Scholar 

  • Bruhns OT (2003) Advanced mechanics of solids. Springer, Berlin

    Book  Google Scholar 

  • Bruhns OT (2014a) The Prandtl-Reuss equations revisited. Z Angew Math Mech 94:187–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bruhns OT (2014b) Some remarks on the history of plasticity – Heinrich Hencky, a pioneer of the early years. In: Stein E (ed) The history of theoretical, material and computational mechanics – mathematics meets mechanics and engineering. Springer, Berlin/Heidelberg, pp 133–152

    Chapter  Google Scholar 

  • Bruhns OT, Xiao H, Meyers A (2001) Constitutive inequalities for an isotropic elastic strain energy function based on Hencky’s logarithmic strain tensor. Proc R Soc Lond A 457:2207–2226

    Article  MathSciNet  MATH  Google Scholar 

  • Bruhns OT, Meyers A, Xiao H (2004) On non-corotational rates of Oldroyd’s type and relevant issues in rate constitutive formulations. Proc R Soc Lond A 460: 909–928

    Article  MathSciNet  MATH  Google Scholar 

  • Burgers JM (1939) Some considerations on the fields of stress connected with dislocations in a regular crystal lattice. In: Proceeding of section of science, vol 42. Koninklijke Nederlandse Akademie van Wetenschappen, Noordwijkerhout, pp 293–325, 378–399

    Google Scholar 

  • Carathéodory C, Schmidt E (1923) Über die Hencky-Prandtlschen Kurven. Z angew Math Mech 3:468–475

    Article  MATH  Google Scholar 

  • Carlson DE, Hoger A (1986) The derivative of a tensor-valued function of a tensor. Qart Appl Math 44: 409–423

    Article  MathSciNet  MATH  Google Scholar 

  • Casey J, Naghdi PM (1980) A remark on the use of the decomposition F = F e F p in plasticity. J Appl Mech 47:672–675

    Article  MATH  Google Scholar 

  • Casey J, Naghdi PM (1981) Discussion of Lubarda and Lee (1981), cited below. J Appl Mech 48:983–984

    Article  Google Scholar 

  • Casey J, Naghdi PM (1983) On the use of invariance requirements for intermediate configurations associated with the polar decomposition of a deformation gradient. Quart Appl Math 41:339–342

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo C (1958) Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. CR Acad Sci Paris 247:431–433

    MATH  Google Scholar 

  • Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomat. 9–13

    Google Scholar 

  • Clayton JD, McDowell DL (2003) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19:1401–1444

    Article  MATH  Google Scholar 

  • Collins IF (2005) Elastic/plastic models for soils and sands. Int J Mech Sci 47:493–508

    Article  MATH  Google Scholar 

  • Considère A (1889) Résistance des pièces comprimées. Congr Int des Procédés de Constr 3:371

    Google Scholar 

  • Cotter BA, Rivlin RS (1955) Tensors associated with time-dependent stress. Quart Appl Math 13:177–182

    Article  MathSciNet  MATH  Google Scholar 

  • Coulomb C (1773) Essai sur une application des règles de maximis et minimis à quelques problèmes de statique. Mém de Math et Phys 7:343–382

    Google Scholar 

  • Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Darijani H, Naghdabadi R (2010) Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int J Eng Sci 48:223–236

    Article  Google Scholar 

  • Dashner PA (1986) Invariance considerations in large strain elasto-plasticity. J Appl Mech 53:55–60

    Article  MATH  Google Scholar 

  • Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32:217–232

    Article  MathSciNet  MATH  Google Scholar 

  • Doyle TC, Ericksen JL (1956) Nonlinear elasticity. Adv Appl Mech 4:53–115

    Article  MathSciNet  Google Scholar 

  • Drucker DC (1949) The significance of the criterion for additional plastic deformation of metals. J Colloid Sci 4:299–311

    Article  Google Scholar 

  • Drucker DC (1950) Some implications of work hardening and ideal plasticity. Quart Appl Math 7:411–418

    Article  MathSciNet  MATH  Google Scholar 

  • Eckart C (1948) The thermodynamics of irreversible processes. IV: the theory of elasticity and anelasticity. Phys Rev 73:373–382

    Article  MathSciNet  MATH  Google Scholar 

  • Edelman F, Drucker DC (1951) Some extensions of elementary plasticity theory. J Franklin Inst 251:581–605

    Article  MathSciNet  Google Scholar 

  • Eglit ME (1960) Tensorial characteristics of finite deformations. Prikl Mat Mekh 24:1432–1438

    MATH  Google Scholar 

  • Engesser F (1889) Über die Knickfestigkeit gerader Stäbe. Z Arch Ing-Ver 35:455

    MATH  Google Scholar 

  • Engesser F (1895) Über Knickfragen. Schweiz Bauzeitung 26:24–26

    Google Scholar 

  • Fitzgerald S (1980) A tensorial Hencky measure of strain and strain rate for finite deformation. J Appl Phys 51:5111–5115

    Article  Google Scholar 

  • Fox N (1968) On the continuum theories of dislocations and plasticity. Quart J Mech Appl Math 21:67–75

    Article  MATH  Google Scholar 

  • Freund LB (1970) Constitutive equations for elastic-plastic materials at finite strain. Int J Solids Struct 6:1193–1209

    Article  MATH  Google Scholar 

  • Fromm H (1933) Stoffgesetze des isotropen Kontinuums, insbesondere bei zähplastischem Verhalten. Ing-Arch 4:432–466

    Article  MATH  Google Scholar 

  • Geiringer H (1930) Beitrag zum vollständigen ebenen Plastizitätsproblem. In: Proceedings of 3rd international congress of applied mechanics, vol 2, Stockholm. pp 185–190

    Google Scholar 

  • Geiringer H (1937) Fondements mathématiques de la théorie des corps plastiques isotropes. Mémorial des sciences mathematiques, vol 86. Gauthier-Villars, Paris, pp 1–89

    Google Scholar 

  • Geiringer H, Prager W (1934) Mechanik isotroper Körper im plastischen Zustand. Ergebn exakt Naturwiss 13:310–363

    MATH  Google Scholar 

  • von Göler V, Sachs G (1927) Das Verhalten von Aluminiumkristallen bei Zugversuchen, I. Geometrische Grundlagen. Z Physik, A 41:103–115

    Google Scholar 

  • Green AE (1956) Hypo-elasticity and plasticity. Proc R Soc Lond A 234:46–59

    Article  MathSciNet  MATH  Google Scholar 

  • Green AE, McInnis BC (1967) Generalized hypo-elasticity. Proc R Soc Edinb A 67:220–230

    MathSciNet  MATH  Google Scholar 

  • Green AE, Naghdi PM (1965) A general theory of an elastic-plastic continuum. Arch Rat Mech Anal 18:251–281; corrigenda 19, 408

    Article  MathSciNet  MATH  Google Scholar 

  • Green AE, Naghdi PM (1971) Some remarks on elastic-plastic deformation at finite strain. Int J Eng Sci 9:1219–1229

    Article  MATH  Google Scholar 

  • Green AP (1951) The compression of a ductile material between smooth dies. Phil Mag 42:900–918

    Article  Google Scholar 

  • Green AP (1953) The plastic yielding of notched bars due to bending. Quart J Mech Appl Math 6:223–239

    Article  MathSciNet  Google Scholar 

  • Green AP (1954) On the use of hodographs in problems of plane plastic strain. J Mech Phys Solids 2:73–80

    Article  MathSciNet  Google Scholar 

  • Greenberg HJ (1949) Complementary minimum principles for an elastic-plasticity material. Quart Appl Math 7:85–95

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Spear K (1983) On the relationship between the logarithmic strain rate and the stretching tensor. Int J Solids Struct 19:437–444

    Article  MathSciNet  MATH  Google Scholar 

  • Haar A, von Kármán T (1909) Zur Theorie der Spannungszustände in plastischen und sandartigen Medien. In: Nachr. Königl. Ges. Wiss., Math. Phys. Kl., Göttingen, pp 204–218

    MATH  Google Scholar 

  • Hamilton W (1847) The hodograph, or a new method of expressing in symbolical language the Newtonian law of attraction. Proc R Irish Acad 3:344–353

    Google Scholar 

  • Haupt P (1985) On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior. Int J Plast 1:303–316

    Article  MATH  Google Scholar 

  • Haupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hayes DJ, Marcal PV (1967) Determination of upper bounds for problems in plane stress using finite element techniques. Int J Mech Sci 9:245–251

    Article  MATH  Google Scholar 

  • Hencky H (1923) Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern. Z Angew Math Mech 3:241–251

    Article  MATH  Google Scholar 

  • Hencky H (1924) Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Z Angew Math Mech 4:323–335

    Article  MATH  Google Scholar 

  • Hencky H (1925a) Die Bewegungsgleichungen beim nichtstationären Fließen plastischer Massen. Z angew Math Mech 5:144–146

    MATH  Google Scholar 

  • Hencky H (1925b) Über langsame stationäre Strömungen in plastischen Massen mit Rücksicht auf die Vorgänge beim Walzen, Pressen und Ziehen von Metallen. Z Angew Math Mech 5:115–124

    MATH  Google Scholar 

  • Hencky H (1928) Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z Techn Phys 9: 215–223

    MATH  Google Scholar 

  • Hencky H (1929) Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Ann Physik 5:617–630

    Article  MATH  Google Scholar 

  • Hencky H (1931) The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J Rheol 2:169–176

    Article  Google Scholar 

  • Hencky H (1932) A simple model explaining the hardening effect in polycrystalline metals. J Rheol 3:30–36

    Article  Google Scholar 

  • Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Quart J Mech Appl Math 1:18–28

    Article  MathSciNet  MATH  Google Scholar 

  • Hill R (1950) The mathematical theory of plasticity. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Hill R (1959) Some basic principles in the mechanics of solids without a natural time. J Mech Phys Solids 7:209–225

    Article  MathSciNet  MATH  Google Scholar 

  • Hill R (1968) On constitutive inequalities for simple materials. J Mech Phys Solids 16:229–242, 315–322

    Article  MATH  Google Scholar 

  • Hill R (1970) Constitutive inequalities for isotropic elastic solids under finite strain. Proc R Soc Lond A 314:457–472

    Article  MATH  Google Scholar 

  • Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75

    MathSciNet  MATH  Google Scholar 

  • Hill R, Rice JR (1973) Elastic potentials and the structure of inelastic constitutive laws. SIAM J Appl Math 25:448–461

    Article  MATH  Google Scholar 

  • Hill R, Rice JR (1987) Discussion: a rate-independent constitutive theory for finite inelastic deformation (Carroll (1987) J Appl Mech 54:15–21). J Appl Mech 54:745–747

    Article  Google Scholar 

  • Hodge PG, Prager W (1948) A variational principle for plastic materials with strain-hardening. J Math Phys 27:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Hodge PG, White GN (1950) A qualitative comparison of flow and deformation theories of plasticity. J Appl Mech 17:180–184

    MathSciNet  MATH  Google Scholar 

  • Hoff NJ (ed) (1962) Creep in structures. Springer, Berlin/Heidelberg/New York

    MATH  Google Scholar 

  • Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22:1019–1032

    Article  MathSciNet  MATH  Google Scholar 

  • Hoger A (1987) The stress conjugate to logarithmic strain. Int J Solids Struct 23:1645–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Hohenemser K (1931) Elastisch-bildsame Verformungen statisch unbestimmter Stabwerke. Ing-Archiv 2: 472–482

    Article  MATH  Google Scholar 

  • Hohenemser K, Prager W (1932a) Beitrag zur Mechanik des bildsamen Verhaltens von Flußstahl. Z angew Math Mech 12:1–14

    Article  MATH  Google Scholar 

  • Hohenemser K, Prager W (1932b) Fundamental equations and definitions concerning the mechanics of isotropic continua. J Rheol 3:16–22

    Article  MATH  Google Scholar 

  • Hooke R (1678) Lectures de potentia restitutiva, or of spring explaining the power of springing bodies. The Royal Society, London

    Google Scholar 

  • Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26:1310–1334

    Article  MATH  Google Scholar 

  • Houlsby GT, Puzrin AM (2000) A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int J Plast 16:1017–1047

    Article  MATH  Google Scholar 

  • Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8:169–175

    MathSciNet  MATH  Google Scholar 

  • Huber MT (1904) Właściwa praca odkształcenia jako miara wyteżenia materiału. Czasopismo Techniczne (Lwów-Lemberg) 22:38–40, 49–50, 61–62, 80–81

    Google Scholar 

  • Ilyushin AA (1945) Relation between the theory of Saint Venant-Lévy-Mises and the theory of small elastic-plastic deformations (in Russia). Prikl Mat Mekh 9:207–218

    Google Scholar 

  • Jasinski F (1894) Recherches sur la flexion des pièces comprimées. Ann Ponts Chaussées 8:233, 654

    Google Scholar 

  • Jasinski F (1895) Noch ein Wort zu den “Knickfragen”. Schweiz Bauzeitung 25:172–175

    Google Scholar 

  • Jaumann G (1911) Geschlossenes System physikali- scher und chemischer Differential-Gesetze. Sitzber Akad Wiss Wien, Abt IIa 120:385–530

    MATH  Google Scholar 

  • Johnson W, Kudo H (1962) The mechanics of metal extrusion. Manchester University Press, Manchester

    Google Scholar 

  • Johnson W, Mellor PB (1973) Engineering plasticity. Van Nostrand Reinhold, London

    Google Scholar 

  • Johnson W, Sowerby R, Haddow JB (1970) Plane-strain slip-line fields: theory and bibliography. Edward Arnold Ltd., New York

    Google Scholar 

  • von Kármán T (1910) Untersuchungen über Knickfestigkeit., vol 81. Mitt. VDI

    Google Scholar 

  • von Kármán T (1925) Beitrag zur Theorie des Walzvorganges. Z Angew Math Mech 5:139–141

    MATH  Google Scholar 

  • Kestin J, Rice JR (1970) Paradoxes in the applications of thermodynamics to strained solids. In: Stuart EB, Cal’Or B, Brainard AJ (eds) A critical review of thermodynamics. Mono Book Corp., Baltimore, pp 275–298

    Google Scholar 

  • Khan AS, Huang SJ (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  • Kitagawa H, Tomita Y (1974) Analysis of plane elastic-plastic large deformation problems by incremental type finite element method (in Japanese). Trans JSME 40:663–670

    Article  Google Scholar 

  • Kleiber M (1986) On errors inherent in commonly accepted rate forms of the elastic constitutive law. Arch Mech 38:271–279

    MATH  Google Scholar 

  • Kobayashi S (1964) Upper bound solutions of axisymmetric forming problems. J Eng Ind, Trans ASME 86:122–126, 326–332

    Google Scholar 

  • Kobayashi S, Oh SI, Altan T (1989) Metal forming and the finite-element method. Oxford University Press, New York

    Google Scholar 

  • Koiter WT (1953) Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface. Quart Appl Math 11:350–354

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1960) General theorems for elastic-plastic solids. In: Sneddon I, Hill R (eds) Progress in solid mechanics, chap IV, vol 1. North-Holland Publishing Company, Amsterdam, pp 165–121

    Google Scholar 

  • Kratochvíl J (1971) Finite-strain theory of crystalline elastic-inelastic materials. J Appl Phys 42:1104–1108

    Article  Google Scholar 

  • Kröner E (1958) Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kröner E (1960) Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch Rat Mech Anal 4:273–334

    Article  MathSciNet  MATH  Google Scholar 

  • Kudo H (1960) Some analytical and experimental studies of axi-symmetric cold forging and extrusion. Int J Mech Sci 2:102–127

    Article  Google Scholar 

  • Lee CH, Kobayashi S (1973) New solutions to rigid-plastic deformation problems using a matrix method. Trans ASME, J Eng Ind 95:865–873

    Article  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6

    Article  MATH  Google Scholar 

  • Lee EH (1981) Some comments on elastic-plastic analysis. Int J Solids Struct 17:859–872

    Article  MATH  Google Scholar 

  • Lee EH (1982) Finite deformation theory with nonlinear kinematics. In: Lee EH, Mallett RL (eds) Plasticity of metals at finite strain: theory, computation and experiment. Stanford University and RPI, Stanford, pp 107–129

    Google Scholar 

  • Lee EH (1996) Some anomalies in the structure of elastic-plastic theory at finite strain. In: Carroll MM, Hayes M (eds) Nonlinear effects in fluids and solids. Plenum Press, New York, pp 227–249

    Chapter  Google Scholar 

  • Lee EH, Germain P (1974) Elastic-plastic theory at finite strain. In: Sawczuk A (ed) Problems of plasticity. Nordhoff, Leyden, pp 117–133

    Chapter  Google Scholar 

  • Lee EH, Liu DT (1967) Finite strain elastic-plastic theory with application to plane-wave analysis. J Appl Phys 38:19–27

    Article  Google Scholar 

  • Lee EH, McMeeking RM (1980) Concerning elastic and plastic components of deformation. Int J Solids Struct 16:715–721

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann T (1972) Anisotrope plastische Formänderungen. Rom J Technol Sci Appl Mech 17:1077–1086

    MATH  Google Scholar 

  • Lehmann T (ed) (1984) The constitutive law in thermoplasticity. CISM courses and lectures, vol 281. Springer, Wien

    Google Scholar 

  • Lehmann T, Liang HY (1993) The stress conjugate to logarithmic strain \(\ln \mathbf {V}\). Z Angew Math Mech 73: 357–363

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann T, Guo ZH, Liang HY (1991) The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur J Mech A/Solids 10:395–404

    MathSciNet  MATH  Google Scholar 

  • Lévy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Acad Sci Paris 70:1323–1325

    MATH  Google Scholar 

  • Lin RC (2002) Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. Int J Numer Meth Eng 55:1053–1077

    Article  MATH  Google Scholar 

  • Lin RC, Schomburg U, Kletschkowski T (2003) Analytical stress solutions of a closed deformation path with stretching and shearing using the hypoelastic formulations. Eur J Mech A/Solids 22:443–461

    Article  MATH  Google Scholar 

  • Lubarda VA, Lee EH (1981) A correct definition of elastic and plastic deformation and its computational significance. J Appl Mech 48:35–40

    Article  MathSciNet  MATH  Google Scholar 

  • Lubliner J (1972) On the thermodynamic foundations of non-linear solid mechanics. Int J Non-Linear Mech 7:237–254

    Article  MATH  Google Scholar 

  • Lubliner J (1984) A maximal-dissipation principle in generalized plasticity. Acta Mech 52:225–237

    Article  MathSciNet  MATH  Google Scholar 

  • Lubliner J (1986) Normality rules in large-deformation plasticity. Mech Mater 5:29–34

    Article  Google Scholar 

  • Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, New York

    MATH  Google Scholar 

  • Ludwik P (1909a) Elemente der technologischen Mechanik. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ludwik P (1909b) Über den Einfluß der Deformationsgeschwindigkeit bei bleibenden Deformationen mit besonderer Berücksichtigung der Nachwirkungserscheinungen. Phys Z 10:411–417

    Google Scholar 

  • Lung M, Mahrenholtz O (1973) A finite element procedure for analysis of metal forming processes. Trans CSME 2:31–36

    Google Scholar 

  • Macvean DB (1968) Die Elementararbeit in einem Kontinuum und die Zuordnung von Spannungs- und Ver-zerrungstensoren. Z Angew Math Phys 19:157–185

    Article  MATH  Google Scholar 

  • Malvern LE (1951) The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect. J Appl Mech 18:203–208

    MathSciNet  MATH  Google Scholar 

  • Mandel JP (1972) Plasticité Classique et Viscoplasticité. CISM courses and lectures, vol 97. Springer, Wien

    Google Scholar 

  • Mandel JP (1973a) Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int J Solids Struct 9:725–740

    Article  MATH  Google Scholar 

  • Mandel JP (1973b) Relations de comportement des milieux élastiques-viscoplastiques. notion de répère directeur. In: Sawczuk A (ed) Foundations of plasticity. Noordhoff International Publishing, Leyden, pp 387–399

    Google Scholar 

  • Mandel JP (1974a) Director vectors and constitutive equations for plastic and viscoplastic media. In: Sawczuk A (ed) Problems of plasticity, Noordhoff International Publishing, Leyden, pp 135–143

    Chapter  Google Scholar 

  • Mandel JP (1974b) Thermodynamics and plasticity. In: Domingos JJ, Nina MNR, Whitelaw JH (eds) Foundations of continuum thermodynamics. The MacMillan Press, London, pp 283–304

    Google Scholar 

  • Mandel JP (1981) Sur la définition de la vitesse de déformation élastique et sa relation avec la vitesse de contrainte. Int J Solids Struct 17:873–878

    Article  MATH  Google Scholar 

  • Marcal PV, King IP (1967) Elastic-plastic analysis of two-dimensional stress systems by the finite element method. Int J Mech Sci 9:143–145

    Article  Google Scholar 

  • Markov AA (1947) On variational principles in the theory of plasticity (in Russia). Prikl Mat Mekh 11: 339–350

    MATH  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Maugin GA (1992) The Thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • McMeeking RM, Rice JR (1975) Finite-element formulations for problems of large elastic-plastic deformation. Int J Solids Struct 11:601–616

    Article  MATH  Google Scholar 

  • Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Ing-Arch 9:116–126

    Article  MATH  Google Scholar 

  • Meyers A, Xiao H, Bruhns O (2003) Elastic stress ratchetting and corotational stress rates. Technische Mechanik 23:92–102

    Google Scholar 

  • Meyers A, Xiao H, Bruhns OT (2006) Choice of objective rate in single parameter hypoelastic deformation cycles. Comput Struct 84:1134–1140

    Article  Google Scholar 

  • von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. In: Nachr. Königl. Ges. Wiss., Math. Phys. Kl., Göttingen, pp 582–592

    MATH  Google Scholar 

  • von Mises R (1925) Bemerkungen zur Formulierung des mathematischen Problems der Plastizitätstheorie. Z angew Math Mech 5:147–149

    MATH  Google Scholar 

  • von Mises R (1928) Mechanik der plastischen Formänderung von Kristallen. Z angew Math Mech 8:161–185

    Article  MATH  Google Scholar 

  • Mori K, Osakada K, Oda T (1982) Simulation of plane-strain rolling by the rigid-plastic finite element. Int J Mech Sci 24:519–527

    Article  Google Scholar 

  • Morrison JLM, Shepherd WM (1950) An experimental investigation of plastic stress-strain relations. Proc Inst Mech Eng 163:1–17

    Article  Google Scholar 

  • Nádai A (1921) Versuche über die plastischen Formänderungen von keilförmigen Körpern aus Flußeisen. Z angew Math Mech 1:20–28

    Article  Google Scholar 

  • Nádai A (1931) Plasticity, a mechanics of the plastic state of matter. McGraw-Hill, New York

    Book  MATH  Google Scholar 

  • Nádai A (1939) The force required for rolling steel strip under tension. J Appl Mech A 6:54–62

    Google Scholar 

  • Naghdi PM (1960) Stress-strain relations in plasticity and thermoplasticity. In: Lee EH, Symonds PS (eds) Plasticity, proceedings of 2nd symposium Naval structural mechanics. Pergamon Press, New York, pp 121–169

    Google Scholar 

  • Naghdi PM (1990) A critical review of the state of finite plasticity. Z Angew Math Phys 41:315–394

    Article  MathSciNet  MATH  Google Scholar 

  • Naghdi PM, Casey J (1992) A prescription for the identification of finite plastic strain. Int J Eng Sci 30:1257–1278

    Article  MathSciNet  MATH  Google Scholar 

  • Naghdi PM, Trapp JA (1975a) On the nature of normality of plastic strain rate and convexity of yield surfaces in plasticity. J Appl Mech 42:61–66

    Article  MATH  Google Scholar 

  • Naghdi PM, Trapp JA (1975b) Restrictions on constitutive equations of finitely deformed elastic-plastic materials. Quart J Mech appl Math 28:25–46

    Article  MathSciNet  MATH  Google Scholar 

  • Naghdi PM, Trapp JA (1975c) The significance of formulating plasticity theory with reference to loading surfaces in strain space. Int J Eng Sci 13:785–797

    Article  MATH  Google Scholar 

  • Nagtegaal JC, de Jong JE (1982) Some aspects of non-isotropic workhardening in finite strain plasticity. In: Lee EH, Mallet RL (eds) Plasticity of metals at finite strain: theory, computation and experiment. Stanford University, Stanford, pp 65–106

    Google Scholar 

  • Navier L (1821) Sur les lois des mouvements des fluides, en ayant égard à l’adhésion des molécules. Ann de Chimie 19:244–260

    Google Scholar 

  • Neff P, Münch I, Martin R (2016) Rediscovering G.F. Becker’s early axiomatic deduction of a multiaxial nonlinear stress-strain relation based on logarithmic strain. Math Mech Solids 21:856–911

    Article  MathSciNet  MATH  Google Scholar 

  • Nemat-Nasser S (1979) Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int J Solids Struct 15:155–166

    Article  MATH  Google Scholar 

  • Nemat-Nasser S (1982) On finite deformation elasto-plasticity. Int J Solids Struct 18:857–872

    Article  MATH  Google Scholar 

  • Noll W (1955) On the continuity of the solid and fluid state. J Rat Mech Anal 4:3–81

    MathSciNet  MATH  Google Scholar 

  • Norton FH (1929) Creep of steel at high temperatures. McGraw-Hill Book Co., New York

    Google Scholar 

  • Nouailhas D, Chaboche JL, Savalle S, Cailletaud G (1985) On the constitutive equations for cyclic plasticity under nonproportional loading. Int J Plasticity 1:317–330

    Article  Google Scholar 

  • Odqvist FKG (1933) Die Verfestigung von flußeisenähnlichen Körpern. Z angew Math Mech 13:360–363

    Article  MATH  Google Scholar 

  • Odqvist FKG (1935) Creep stresses in a rotating disc. In: Proceedings of IV international congress for applied mechanics, Cambridge 1934, Cambridge University Press, pp 228–233

    Google Scholar 

  • Ogden RW (1984) Non-linear elastic deformations. Ellis Harwood, Chichester

    MATH  Google Scholar 

  • Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond A 200:523–541

    Article  MathSciNet  MATH  Google Scholar 

  • Orowan E (1934) Zur Kristallplastizität I–III. Z Physik 89:605–613, 614–633, 634–659

    Google Scholar 

  • Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Eng 150:140–167

    Article  Google Scholar 

  • Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Quart Appl Math 20: 321–332

    Article  MathSciNet  MATH  Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. Adv Appl Mech 9:243–377

    Article  Google Scholar 

  • Perzyna P (1971) Thermodynamic theory of viscoplasticity. Adv Appl Mech 11:313–354

    Article  MATH  Google Scholar 

  • Perzyna P, Wierzbicki T (1964) Temperature dependent and strain rate sensitive plastic materials. Arch Mech Stosow 16:135–143

    Google Scholar 

  • Phillips A (1974) The foundations of thermoplasticity – experiments and theory. In: Zeman JL, Ziegler F (eds) Topics in applied continuum mechanics. Springer, Wien, pp 1–21

    Google Scholar 

  • Phillips A, Kasper R (1973) On the foundations of thermoplasticity – an experimental investigation. J Appl Mech 40:891–896

    Article  Google Scholar 

  • Poisson SD (1831) Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. J École Poly 13

    Google Scholar 

  • Polanyi M (1934) Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z Physik 89:660

    Article  Google Scholar 

  • Prager W (1935) Der Einfluß der Verformung auf die Fließbedingung zähplastischer Körper. Z angew Math Mech 15:76–80

    Article  MATH  Google Scholar 

  • Prager W (1944) Exploring stress-strain relations of isotropic plastic solids. J Appl Phys 15:65–71

    Article  Google Scholar 

  • Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840

    Article  MathSciNet  Google Scholar 

  • Prager W (1948) Theory of plastic flow versus theory of plastic deformation. J Appl Phys 19:540–543

    Article  MathSciNet  Google Scholar 

  • Prager W (1949) Recent developments in the mathematical theory of plasticity. J Appl Phys 20:235–241

    Article  MathSciNet  MATH  Google Scholar 

  • Prager W (1953) A geometrical discussion of the slip line field in plane plastic flow, vol 65. Royal Institute of Technology, Stockholm

    MATH  Google Scholar 

  • Prager W (1955) Probleme der Plastizitätstheorie. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Prager W (1956) A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech 23, 24:493–496, 481–484

    Google Scholar 

  • Prager W (1958) Non-isothermal plastic deformation. Proc. Koninkl. Nederl. Acad. Wet. B61:176–182

    MATH  Google Scholar 

  • Prager W (1960) An elementary discussion of definitions of stress rate. Quart Appl Math 18:403–407

    Article  MathSciNet  MATH  Google Scholar 

  • Prager W (1961) Introduction to mechanics of continua. Ginn and Company, Boston

    MATH  Google Scholar 

  • Prager W, Hodge PG (1951) Theory of perfectly plastic solids. Wiley, New York

    MATH  Google Scholar 

  • Prandtl L (1920) Über die Härte plastischer Körper. Nachr Königl Ges Wiss Göttingen Math-phys Kl pp 74–85

    Google Scholar 

  • Prandtl L (1921) Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von Schneiden. Z angew Math Mech 1:15–20

    Article  MATH  Google Scholar 

  • Prandtl L (1923) Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht. Z angew Math Mech 3:401–406

    Article  MATH  Google Scholar 

  • Prandtl L (1924) Spannungsverteilung in plastischen Körpern. In: Proceedings of the 1st international congress for applied mechanics, Delft, pp 43–46

    Google Scholar 

  • Prandtl L (1928) Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z angew Math Mech 8: 85–106

    Article  MATH  Google Scholar 

  • Raniecki B, Sawczuk A (1975) Thermal effects in plasticity. Part I coupled theory, part II uniqueness and applications. Z angew Math Mech 55:333–341, 363–373

    Google Scholar 

  • Reinhardt WD, Dubey RN (1995) Eulerian strain-rate as a rate of logarithmic strain. Mech Res Commun 22: 165–170

    Article  MATH  Google Scholar 

  • Reinhardt WD, Dubey RN (1996) Coordinate-independent representation of spins in continuum mechanics. J Elast 42:133–144

    Article  MathSciNet  MATH  Google Scholar 

  • Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Z angew Math Mech 10:266–274

    Article  MATH  Google Scholar 

  • Reuss A (1932) Fließpotential oder Gleitebenen? Z angew Math Mech 12:15–24

    Article  MATH  Google Scholar 

  • Reuss A (1933) Vereinfachte Berechnung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. Z angew Math Mech 13:356–360

    Article  MATH  Google Scholar 

  • Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19:433–455

    Article  MATH  Google Scholar 

  • Rice JR (1975) Continuum mechanics and thermodynamics of plasticity in relation to micro-scale deformation mechanism. In: Argon AS (ed) Constitutive equations in plasticity, MIT Press, Cambridge, pp 21–79

    Google Scholar 

  • Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. J Rat Mech Anal 4: 323–425

    MathSciNet  MATH  Google Scholar 

  • Rychlewski J (2011) Elastic energy decomposition and limit criteria. Eng Trans 59:31–63

    Google Scholar 

  • Sachs G (1927) Zur Theorie des Ziehvorganges. Z angew Math Mech 7:235–236

    Article  MATH  Google Scholar 

  • Sachs G (1928) Zur Ableitung einer Fließbedingung. VDI-Z 72:734–736

    Google Scholar 

  • de Saint-Venant B (1843) Note à joindre au mémoire sur la dynamique des fluides, présenté le 14 avril 1834. C R Acad Sci, Paris 17:1240–1243

    Google Scholar 

  • de Saint-Venant B (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides au delà des limites où l’élasticité pourrait les ramener à leur premier état. C R Acad Sci, Paris 70:473–480

    MATH  Google Scholar 

  • Schmid E (1925) Neuere Untersuchungen an Metall-kristallen. In: Biezeno CB, Burgers JM (eds) Proceedings of the first International Congress for Applied Mechanics, J. Waltmann Jr., Delft, pp 342–353

    Google Scholar 

  • Schmid E (1926) Über die Schubverfestigung von Einkristallen bei plastischer Deformation. Z Physik A 40:54–74

    Article  Google Scholar 

  • Schmidt R (1932) Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing-Arch 3:215–235

    Article  MATH  Google Scholar 

  • Sedov LI (1966) Foundations of the non-linear mechanics of continua. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Seth BR (1964) Generalized strain measures with applications to physical problems. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, Oxford, pp 162–172

    Google Scholar 

  • Shanley FR (1946) The column paradox. J Aeronaut Sci 13:678

    Article  Google Scholar 

  • Shanley FR (1947) Inelastic column theory. J Aeronaut Sci 14:261–268

    Article  Google Scholar 

  • Sidoroff F (1973) The geometrical concept of intermediate configuration and elastic-plastic finite strain. Arch Mech 25:299–308

    MathSciNet  MATH  Google Scholar 

  • Siebel E (1923) Grundlagen zur Berechnung des Kraft- und Arbeitsbedarfs beim Schmieden und Walzen. Stahl u Eisen 43:1295–1298

    Google Scholar 

  • Simó JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Simó JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Compt Meth Appl Mech Eng 46:201–215

    Article  MATH  Google Scholar 

  • Smith GV (1962) Stress-strain-time-temperature relations in metallic materials. In: Stress-strain-time-temperature relationships in materials, no. 325. ASTM Special Technical Publication, Philadelphia, pp 35–59

    Google Scholar 

  • Sokolovskii VV (1946) The theory of plasticity – outline of work done in russia. J Appl Mech 13:A1–A10

    MathSciNet  MATH  Google Scholar 

  • Sowerby R, Chu E (1984) Rotations, stress rates and strain measures in homogeneous deformation processes. Int J Solids Struct 20:1037–1048

    Article  MATH  Google Scholar 

  • Stokes G (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Cambr Phil Soc 8:287–319

    Google Scholar 

  • Strang G, Fix G (1973) An analysis of the finite element method. Prentice Hall, Englewood Clifs

    MATH  Google Scholar 

  • Szabó L, Balla M (1989) Comparison of some stress rates. Int J Solids Struct 25:279–297

    Article  MathSciNet  Google Scholar 

  • Taylor GI (1934) The mechanism of plastic deformation of crystals I-II. Proc R Soc Lond A 145:362–387, 388–404

    Article  MATH  Google Scholar 

  • Taylor GI (1938) Plastic strain in metals. J Inst Metals 62:307–324

    Google Scholar 

  • Taylor GI, Elam CF (1923) The distortion of an aluminium crystal during a tensile test. Proc R Soc Lond A 102:643–667

    Article  Google Scholar 

  • Thomas TY (1955a) Kinematically preferred co-ordinate systems. Proc Nat Acad Sci USA, Math 41:762–770

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas TY (1955b) On the structure of stress-strain relations. Proc Nat Acad Sci USA, Eng 41:716–720

    Article  MathSciNet  MATH  Google Scholar 

  • Tokuoka T (1977) Rate type plastic material with kinematic work-hardening. Acta Mech 27:145–154

    Article  Google Scholar 

  • Tokuoka T (1978) Prandtl-Reuss plastic material with scalar and tensor internal variables. Arch Mech 30:801–826

    MathSciNet  MATH  Google Scholar 

  • Tresca HE (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C R Acad Sci Paris 59:754–758

    Google Scholar 

  • Tresca HE (1868) Mémoire sur l’écoulement des corps solides. Mém pres par div sav 18:733–799

    MATH  Google Scholar 

  • Trinks W (1937) Pressure and roll flattening in cold rolling. Blast Furnace Steel Plant 25:617–623

    Google Scholar 

  • Truesdell C (1952, 1953) The mechanical foundations of elasticity and fluid dynamics. J Rat Mech Anal 1, 2:125–300, 595–616

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell C (1955a) Hypo-elasticity. J Rat Mech Anal 4:83–133

    MathSciNet  MATH  Google Scholar 

  • Truesdell C (1955b) The simplest rate theory of pure elasticity. Comm Pure Appl Math 8:123–132

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol III/3. Springer, Berlin

    Google Scholar 

  • Truesdell CA (1964) Second-order effects in the mechanics of materials. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon Press, Oxford

    Google Scholar 

  • Truesdell CA (1984) Rational thermodynamics, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Voigt W (1890) Über die innere Reibung der festen Körper, insbesondere der Krystalle. Abh Kgl Ges Wiss Göttingen Math. Kl. 36, 1

    Google Scholar 

  • Voigt W (1892) Bestimmung der Constanten der Elasticität und Untersuchung der inneren Reibung für einige Metalle. Abh Kgl Ges Wiss Göttingen Math. Kl. 38, 2

    Google Scholar 

  • Washizu K (1968) Variational methods in elasticity and plasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Willhelm AC, Kattus JR (1963) Stress-strain characteristics of metals under conditions of transient heating and loading. Proc Am Soc Testing Mater 63: 613–619

    Google Scholar 

  • Willis JR (1969) Some constitutive equations applicable to problems of large dynamic plastic deformation. J Mech Phys Solids 17:359–369

    Article  MATH  Google Scholar 

  • Xiao H (1995) Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int J Solids Struct 32:3327–3340

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997a) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47:51–68

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997b) Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech 124:89–105

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1997c) A new aspect in the kinematics of large deformations. In: Gupta NK (ed) Plasticity and impact mechanics. New Age Internat. Ltd., New Delhi, pp 100–109

    Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1998a) Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch Mech 50:1015–1045

    MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1998b) On objective corotational rates and their defining spin tensors. Int J Solids Struct 35:4001–4014

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (1998c) Strain rates and material spins. J Elast 52:1–41

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (2000) The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc R Soc Lond A 456:1865–1882

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (2002) New results for the spin of the Eulerian triad and the logarithmic spin and rate. Acta Mech 155:95–109

    Article  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech 182(1–2): 31–111

    Article  MATH  Google Scholar 

  • Xiao H, Bruhns OT, Meyers A (2007) Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects. J Mech Phys Solids 55:338–365

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10:343–354

    Article  MATH  Google Scholar 

  • Yang DY, Lee CH (1978) Analysis of three-dimensional extrusion of sections through curved dies by conformal transformation. Int J Mech Sci 26:541–552

    Article  Google Scholar 

  • Zaremba S (1903) Sur une forme perfectionée de la théorie de la relaxation. Bull Intern Acad Sci Cracovie pp 594–614

    Google Scholar 

  • Zhilin PA, Altenbach H, Ivanova EA, Krivtsov A (2013) Material strain tensors. In: Altenbach H, et al (eds) Generalized continua as models for materials. Springer, Berlin/Heidelberg/New York, pp 321–331

    Chapter  Google Scholar 

  • Ziegler H (1958) An attempt to generalize Onsager’s principle, and its significance for rheological problems. Z Angew Math Phys 9:748–763

    Article  MathSciNet  MATH  Google Scholar 

  • Ziegler H (1959) A modification of Prager’s hardening rule. Quart Appl Math 17:55–65

    Article  MathSciNet  MATH  Google Scholar 

  • Ziegler H (1963) Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In: Sneddon IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Holland, Amsterdam, pp 93–193

    Google Scholar 

  • Zienkiewicz O, Cheung Y (1967) The finite element method in structural and continuum mechanics. Mc-Graw-Hill, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto T. Bruhns .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bruhns, O.T. (2019). History of Plasticity. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_281-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_281-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics