Skip to main content

Damage in Soft Biological Tissues

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 101 Accesses

Synonyms

Microscopic damage; Softening; Supraphysiological loading

Definitions

By “modeling of damage,” the continuum mechanical modeling of macroscopic softening in soft biological tissues as a result of microscopic damage is intended. The focus is thus on the macroscopic material behavior resulting from microscopic damage, not on the discrete fracture mechanisms acting at the microscale. The resulting macroscopic softening hystereses are observed in cyclic tests of supraphysiologically loaded soft biological tissues and need, thus to be considered if loading situations are analyzed which exceed the normal physiological domain. This may particularly be important for the simulation of, e.g., balloon angioplasty or traumas. Note that the passive response of collagenous soft biological tissues as found in arterial walls is considered, i.e., the active response induced by smooth muscle cells is not taken into account.

Introduction

Various biological tissues may be subjected to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkinson K (1982) Numerical integration on the sphere. J Aust Math Soc 23:332–347

    Article  MathSciNet  Google Scholar 

  • Ball J (1977) Convexity conditions and existence theorems in non-linear elasticity. Arch Ration Mech Anal 63:337–403

    Article  Google Scholar 

  • Balzani D, Ortiz M (2012) Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Int J Numer Methods Eng 92:551–570

    Article  MathSciNet  Google Scholar 

  • Balzani D, Schmidt T (2015) Comparative analysis of damage functions for soft tissues: properties at damage initialization. Math Mech Solids 20(4):480--492 https://doi.org/10.1177/1081286513504945

    Article  MathSciNet  Google Scholar 

  • Balzani D, Schröder J, Gross D (2004) A simple model for anisotropic damage with applications to soft tissues. Proc Appl Math Mech 4:236–237

    Article  Google Scholar 

  • Balzani D, Neff P, Schröder J, Holzapfel G (2006a) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070

    Article  MathSciNet  Google Scholar 

  • Balzani D, Schröder J, Gross D (2006b) Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater 2(6):609–618

    Article  Google Scholar 

  • Balzani D, Brinkhues S, Holzapfel G (2012) Constitutive framework for the modeling of damage of collagenous soft tissues with application to arterial walls. Comput Methods Appl Mech Eng 213–216:139–151

    Article  MathSciNet  Google Scholar 

  • Bažant Z, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. Am Soc Civil Eng 1119–1149. https://doi.org/10.1061/ASCE0733-93992002128:111119

    Article  Google Scholar 

  • Bažant Z, Oh B (1986) Efficient numerical integration on the surface of a sphere. Z Angew Math Mech 66:37–49

    Article  MathSciNet  Google Scholar 

  • Blanco S, Polindara C, Goicolea J (2015) A regularised continuum damage model based on the mesoscopic scale for soft tissue. Int J Solids Struct 58:20–33

    Article  Google Scholar 

  • Calvo B, Peña E, Martínez M, Doblaré M (2007) An uncoupled directional damage model for fibered biological soft tissues. Int J Numer Methods Eng 69:2036–2057

    Article  Google Scholar 

  • Dimitrievic B, Hackl K (2008) A method for gradient enhancement of continuum damage models. Tech Mech 28:43–52

    Google Scholar 

  • Ehret A, Itskov M (2007) A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tisues. J Mater Sci 42:8853–9963

    Article  Google Scholar 

  • Ehret A, Itskov M (2009) Modeling of anisotropic softening phenomena: application to soft biological tissues. Int J Plast 25:901–919. https://doi.org/10.1016/j.ijplas.2008.06.001

    Article  MATH  Google Scholar 

  • Famaey N, Vander Sloten J, Kuhl E (2012) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-012-0386-7

  • Fathi F, Ardakani S, Dehaghani P, Mohammadi S (2017) A finite strain integral-type anisotropic damage model for fiber-reinforced materials: application in soft biological tissues. Comput Methods Appl Mech Eng 322:262–295

    Article  MathSciNet  Google Scholar 

  • Fereidoonezhad B, Naghdabadi R, Holzapfel G (2016) Stress softening and permanent deformation in human aortas: continuum and computational modeling with application to arterial clamping. J Mech Behav Biomed Mater 61:600–616

    Article  Google Scholar 

  • Franceschini G, Bigoni D (2006) Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J Mech Phys Solids 54:2592–2620

    Article  Google Scholar 

  • Gasser T (2011) An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater 7:2457–2466

    Article  Google Scholar 

  • Gasser T, Ogden R, Holzapfel G (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  • Govindjee S, Simo J (1991) A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J Mech Phys Solids 39:87–112

    Article  MathSciNet  Google Scholar 

  • Gürses E, Miehe C (2011) On evolving deformation microstructures in non-convex partially damaged solids. J Mech Phys Solids 59:1268–1290

    Article  MathSciNet  Google Scholar 

  • Hokanson J, Yazdani S (1997) A constitutive model of the artery with damage. Mech Res Commun 24:151–159

    Article  Google Scholar 

  • Holzapfel GA, Gasser T, Ogden R (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  Google Scholar 

  • Kachanov L (1958) Time of the rupture process under creep conditions. Izvestija Akademii nauk Sojuza Sovetskich Socialisticeskich Respubliki (SSSR) Otdelenie Techniceskich Nauk (Moskva) 8:26–31

    Google Scholar 

  • Marino M (2015) Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-015-0707-8

  • Miehe C (1995) Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur J Mech A Solids 14:697–720

    MATH  Google Scholar 

  • Miehe C, Keck J (2000) Superimposed finite elastic viscoelastic plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J Mech Phys Solids 48:323–365

    Article  Google Scholar 

  • Natali A, Pavan P, Carniel E, Dorow C (2003) A transversely isotropic elasto-damage constitutive model for the periodontal ligament. Comput Methods Appl Mech Biomed Eng 6:329–336

    Article  Google Scholar 

  • Ogden RW, Roxburgh DG (1999) A pseudo-elastic model for the Mullins effect in filled rubber. Proc R Soc A 455:2861–2877

    Article  MathSciNet  Google Scholar 

  • Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171:419–444

    Article  MathSciNet  Google Scholar 

  • Peña E (2011a) Damage functions of the internal variables for soft biological fibred tissues. Mech Res Commun 38:610–615

    Article  Google Scholar 

  • Peña E (2011b) Prediction of the softening and damage effects with permanent set in fibrous biological materials. J Mech Phys Solids 59:1808–1822

    Article  MathSciNet  Google Scholar 

  • Peña E (2014) Computational aspects of the numerical modelling of softening, damage and permanent set in soft biological tissues. Comput Struct 130:57–72

    Article  Google Scholar 

  • Peña E, Doblaré M (2009) An anisotropic pseudo-elastic approach for modelling Mullins effect in fibrous biological materials. Mech Res Commun 36:784–790. https://doi.org/10.1016/j.mechrescom.2009.05.006

    Article  MATH  Google Scholar 

  • Polindara C, Waffenschmidt T, Menzel A (2016) Simulation of balloon angioplasty in residually stressed blood vessels – application of a gradient-enhanced fibre damage model. J Biomech 49:2341–2348

    Article  Google Scholar 

  • Rebouah M, Chagnon G (2014) Permanent set and stress-softening constitutive equation applied to rubber-like materials and soft tissues. Acta Mech 225:1685–1698

    Article  MathSciNet  Google Scholar 

  • Rodríguez JF, Cacho F, Bea JA, Doblaré M (2006) A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J Mech Phys Solids 54:864–886

    Article  MathSciNet  Google Scholar 

  • Schmidt T, Balzani D (2016) Relaxed incremental variational approach for the modeling of damage-induced stress hysteresis in arterial walls. J Mech Behav Biomed Mater 58:149–162

    Article  Google Scholar 

  • Schmidt T, Balzani D, Holzapfel G (2014) Statistical approach for a continuum description of damage evolution in soft collagenous tissues. Comput Methods Appl Mech Eng 278:41–61

    Article  MathSciNet  Google Scholar 

  • Schriefl A, Schmidt T, Balzani D, Sommer G, Holzapfel G (2015) Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modelling. Acta Biomater 17:125–136

    Article  Google Scholar 

  • Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445

    Article  MathSciNet  Google Scholar 

  • Simo J (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60:153–173

    Article  Google Scholar 

  • Waffenschmidt T, Polindara C, Menzel A, Blanco S (2014) A gradient-enhanced large-deformation continuum damage model for fibre-reinforced materials. Comput Methods Appl Mech Eng 268:801–842

    Article  MathSciNet  Google Scholar 

  • Weisbecker H, Pierce D, Regitnig P, Holzapfel G (2012) Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J Mech Behav Biomed Mater 12:93–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Balzani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Balzani, D. (2018). Damage in Soft Biological Tissues. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics