Skip to main content

Continuum Mechanics of Fractal Media

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Approaches to the description of fractal media; Continuum models of fractal media; Fractal continuum mechanics

Definitions

Basic methods and approaches to the description of fractal media and distributions in continuum mechanics

Introduction

Fractal is a measurable metric set that, in general, cannot be considered a linear (vector) space (Falconer, 1985; Feder, 1988). One of the most important characteristic properties of fractals is their non-integer dimensions (Falconer, 1985; Feder, 1988) such as the Hausdorff and box-counting dimensions. In accordance with the definition of the Hausdorff dimension (and the box-counting dimension), the diameter of the covering sets should tend to zero. The fractal structure of real media cannot be observed at all scales. The fractal properties of fractal media are observed only in a certain range of scales. The fractal structure exists only for the scales L > L 0, where L 0is the characteristic size of atoms or molecules of fractal media....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arzano M, Calcagni G, Oriti D, Scalisi M (2011) Fractional and noncommutative spacetimes. Phys Rev D 84(12):125002. arXiv:1107.5308

    Google Scholar 

  • Calcagni G (2010) Quantum field theory, gravity and cosmology in a fractal universe. J High Energy Phys 120:1–38. arXiv:1001.0571

    Google Scholar 

  • Calcagni G (2012a) Geometry of fractional spaces. Adv Theor Math Phys 16:549–644. arXiv:1106.5787

    Google Scholar 

  • Calcagni G (2012b) Geometry and field theory in multi-fractional spacetime. J High Energy Phys 2012:65. 83 pages. arXiv:1107.5041

    Google Scholar 

  • Calcagni G (2012c) Introduction to multifractional spacetimes. AIP Conf Proc 1483:31–53. arXiv:1209.1110

    Google Scholar 

  • Calcagni G (2013) Multi-scale gravity and cosmology. J Cosmol Astropart Phys 2013(12):041. 57 pages. arXiv:1307.6382

    Google Scholar 

  • Calcagni G, Nardelli G (2012) Momentum transforms and Laplacians in fractional spaces. Adv Theor Math Phys 16:1315–1348. arXiv:1202.5383

    Google Scholar 

  • Calcagni G, Nardelli G (2013) Spectral dimension and diffusion in multi-scale spacetimes. Phys Rev D 88(12):124025. arXiv:1304.2709

    Google Scholar 

  • Calcagni G, Nardelli G, Scalisi M (2012) Quantum mechanics in fractional and other anomalous spacetimes. J Math Phys 53(10):102110. arXiv:1207.4473

    Google Scholar 

  • Carpinteri A, Cornetti P (2002) A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 13(1): 85–94

    Article  MATH  Google Scholar 

  • Carpinteri A, Mainardi F (eds) (1997) Fractals and fractional calculus in continuum mechanics. Springer, New York

    MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2001) Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput Methods Appl Mech Eng 191(1–2):3–19

    Article  MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2003) On the mechanics of quasi-brittle materials with a fractal microstructure. Eng Fract Mech 70(15):2321–2349

    Article  Google Scholar 

  • Carpinteri A, Cornetti P, Kolwankar KM (2004a) Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 21(3):623–632

    Article  MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2004b) A fractal theory for the mechanics of elastic materials. Mater Sci Eng A 365(1–2):235–240

    Article  MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2004c) A disordered microstructure material model based on fractal geometry and fractional calculus. Zeitschrift für Angewandte Mathematik und Mechanik 84(2):128–135

    Article  MathSciNet  MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2004d) The elastic problem for fractal media: basic theory and finite element formulation. Comput Struct 82(6):499–508

    Article  MATH  Google Scholar 

  • Carpinteri A, Chiaia B, Cornetti P (2004e) Numerical modelization of disordered media via fractional calculus. Comput Mater Sci 30(1–2):155–162

    Article  MATH  Google Scholar 

  • Carpinteri A, Cornetti P, Sapora A, Di Paola M, Zingales M (2009a) Fractional calculus in solid mechanics: local versus non-local approach. Phys Scr T136:14003

    Article  Google Scholar 

  • Carpinteri A, Cornetti P, Sapora A (2009b) Static-kinematic fractional operators for fractal and non-local solids. Zeitschrift für Angewandte Mathematik und Mechanik 89(3):207–217

    Article  MathSciNet  MATH  Google Scholar 

  • Collins JC (1984) Renormalization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Demmie PN, Ostoja-Starzewski M (2011) Waves in fractal media. J Elast 104(1–2):187–204

    Article  MathSciNet  MATH  Google Scholar 

  • Derfel G, Grabner P, Vogl F (2012) Laplace operators on fractals and related functional equations (Topical Review). J Phys A 45:46:463001. 34 pages. arXiv:1206.1211

    Google Scholar 

  • Falconer KF (1985) The geometry of fractal sets. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Feder J (1988) Fractals. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Harrison J (1999) Flux across nonsmooth boundaries and fractal Gauss/Green/Stokes’ theorems. J Phys A 32(28):5317–5328

    Article  MathSciNet  MATH  Google Scholar 

  • Joumaa H, Ostoja-Starzewski M (2013) Acoustic-elastodynamic interaction in isotropic fractal media. Eur Phys J Spec Top 222(8):1951–1960

    Article  Google Scholar 

  • Kigami J (2001) Analysis on fractals. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kumagai T (2008) Recent developments of analysis on fractals. Am Math Soc Transl 223(202):81–96

    MATH  Google Scholar 

  • Leibbrandt G (1975) Introduction to the technique of dimensional regularization. Rev Mod Phys 47(4): 849–876

    Article  MathSciNet  Google Scholar 

  • Li J, Ostoja-Starzewski M (2009) Fractal solids, product measures and fractional wave equations. Proc R Soc A 465(2108):2521–2536; Li J, Ostoja-Starzewski M (2011) Correction to Li and Ostoja-Starzewski 465 (2108) 2521. Proc R Soc A 467(2128):1214. 1 page

    Google Scholar 

  • Li J, Ostoja-Starzewski M (2011) Micropolar continuum mechanics of fractal media. Int J Eng Sci 49(12): 1302–1310

    Article  MathSciNet  Google Scholar 

  • Ostoja-Starzewski M (2007a) Towards thermomechanics of fractal media. Zeitschrift für angewandte Mathematik und Physik 58(6):1085–1096

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M (2007b) Towards thermoelasticity of fractal media. J Therm Stresses 30(9–10):889–896

    Article  MATH  Google Scholar 

  • Ostoja-Starzewski M (2008) On turbulence in fractal porous media. Zeitschrift für angewandte Mathematik und Physik 59(6):1111–1117

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M (2009a) Continuum mechanics models of fractal porous media: integral relations and extremum principles. J Mech Mater Struct 4(5):901–912

    Article  Google Scholar 

  • Ostoja-Starzewski M (2009b) Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech 205(1–4):161–170

    Article  MATH  Google Scholar 

  • Ostoja-Starzewski M (2013) Electromagnetism on anisotropic fractals. Zeitschrift für angewandte Mathematik und Physik 64(2):381–390. arXiv: 1106.1491

    Google Scholar 

  • Ostoja-Starzewski M, Li J (2009) Fractal materials, beams and fracture mechanics. Zeitschrift für Angewandte Mathematik und Physik (J Appl Math Phys) 60(6):1194–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M, Li J, Joumaa H, Demmie PN (2014) From fractal media to continuum mechanics. Zeitschrift für Angewandte Mathematik und Mechanik (J Appl Math Mech) 94(5):373–401

    MathSciNet  MATH  Google Scholar 

  • Palmer C, Stavrinou PN (2004) Equations of motion in a non-integer-dimensional space. J Phys A 37(27): 6987–7003

    Article  MathSciNet  MATH  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives theory and applications. Gordon and Breach, New York

    MATH  Google Scholar 

  • Stillinger FH (1977) Axiomatic basis for spaces with noninteger dimensions. J Math Phys 18(6):1224–1234

    Article  MathSciNet  MATH  Google Scholar 

  • Strichartz RS (1999) Analysis on fractals. Not AMS 46(10):1199–1208

    MathSciNet  MATH  Google Scholar 

  • Strichartz RS (2006) Differential equations on fractals. Princeton University Press, Princeton/Oxford

    MATH  Google Scholar 

  • Tarasov VE (2004) Fractional generalization of Liouville equations. Chaos 14(1):123–127. arXiv:nlin.CD/0312044

    Google Scholar 

  • Tarasov VE (2005a) Continuous medium model for fractal media. Phys Lett A 336(2–3):167–174. arXiv:cond-mat/0506137

    Google Scholar 

  • Tarasov VE (2005b) Fractional hydrodynamic equations for fractal media. Ann Phys 318(2):286–307. arXiv:physics/0602096

    Google Scholar 

  • Tarasov VE (2005c) Possible experimental test of continuous medium model for fractal media. Phys Lett A 341(5/6):467–472. arXiv:physics/0602121

    Google Scholar 

  • Tarasov VE (2005d) Dynamics of fractal solid. Int J Mod Phys B 19(27):4103–4114. arXiv:0710.0787

    Google Scholar 

  • Tarasov VE (2005e) Wave equation for fractal solid string. Mod Phys Lett B 19(15):721–728. arXiv:physics/0605006

    Google Scholar 

  • Tarasov VE (2005f) Fractional systems and fractional Bogoliubov hierarchy equations. Phys Rev E 71(1):011102. 12 pages. arXiv:cond-mat/0505720

    Google Scholar 

  • Tarasov VE (2005g) Fractional Liouville and BBGKI equations. J Phys Conf Ser 7:17–33. arXiv:nlin.CD/0602062

    Google Scholar 

  • Tarasov VE (2005h) Fractional Fokker-Planck equation for fractal media. Chaos 15(2):023102. 8 pages. arXiv:nlin.CD/0602029

    Google Scholar 

  • Tarasov VE (2005i) Electromagnetic field of fractal distribution of charged particles. Phys Plasmas 12(8):082106. 9 pages. physics/0610010

    Google Scholar 

  • Tarasov VE (2005j) Multipole moments of fractal distribution of charges. Mod Phys Lett B 19(22):1107–1118. arXiv:physics/0606251

    Google Scholar 

  • Tarasov VE (2006a) Gravitational field of fractal distribution of particles. Celest Mech Dyn Astron 94(1):1–15. arXiv:astro-ph/0604491

    Google Scholar 

  • Tarasov VE (2006b) Transport equations from Liouville equations for fractional systems. Int J Mod Phys B 20(3):341–353. arXiv:cond-mat/0604058

    Google Scholar 

  • Tarasov VE (2006c) Magnetohydrodynamics of fractal media. Phys Plasmas 13(5):052107. 12 pages. arXiv:0711.0305

    Google Scholar 

  • Tarasov VE (2006d) Electromagnetic fields on fractals. Mod Phys Lett A 21(20):1587–1600. arXiv:0711.1783

    Google Scholar 

  • Tarasov VE (2007a) Fokker-Planck equation for fractional systems. Int J Mod Phys B 21(6):955–967. arXiv:0710.2053

    Google Scholar 

  • Tarasov VE (2007b) Fractional Chapman-Kolmogorov equation. Mod Phys Lett B 21(4):163–174. arXiv:0710.0809

    Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, New York

    Google Scholar 

  • Tarasov VE (2013) No violation of the Leibniz rule. No fractional derivative. Commun Nonlinear Sci Numer Simul 18(11):2945–2948

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2014a) Anisotropic fractal media by vector calculus in non-integer dimensional space. J Math Phys 55(8):083510. arXiv:1503.02392

    Google Scholar 

  • Tarasov VE (2014b) Flow of fractal fluid in pipes: non-integer dimensional space approach. Chaos Solitons Fractals 67:26–37. arXiv:1503.02842

    Google Scholar 

  • Tarasov VE (2015a) Vector calculus in non-integer dimensional space and its applications to fractal media. Commun Nonlinear Sci Numer Simul 20(2):360–374. arXiv:1503.02022

    Google Scholar 

  • Tarasov VE (2015b) Elasticity of fractal material by continuum model with non-integer dimensional space. Comptes Rendus Mecanique 343(1):57–73. arXiv:1503.03060

    Google Scholar 

  • Tarasov VE (2015c) Fractal electrodynamics via non-integer dimensional space approach. Phys Lett A 379(36):2055–2061

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2015d) Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos Solitons Fractals 81(Part A):38–42

    Google Scholar 

  • Tarasov VE (2016a) Leibniz rule and fractional derivatives of power functions. J Comput Nonlinear Dyn 11(3):031014

    Article  Google Scholar 

  • Tarasov VE (2016b) On chain rule for fractional derivatives. Commun Nonlinear Sci Numer Simul 30(1–3): 1–4

    Article  MathSciNet  Google Scholar 

  • Tarasov VE (2016c) Local fractional derivatives of differentiable functions are integer-order derivatives or zero. Int J Appl Comput Math 2(2):195–201. https://doi.org/10.1007/s40819-015-0054-6

    Article  MathSciNet  Google Scholar 

  • Tarasov VE (2016d) Heat transfer in fractal materials. Int J Heat Mass Trans 93:427–430

    Article  Google Scholar 

  • Tarasov VE (2016e) Acoustic waves in fractal media: non-integer dimensional spaces approach. Wave Motion 63:18–22

    Article  MathSciNet  Google Scholar 

  • Tarasov VE (2016f) Poiseuille equation for steady flow of fractal fluid. Int J Mod Phys B 30(22):1650128. 13 pages

    Article  MathSciNet  MATH  Google Scholar 

  • ’t Hooft G, Veltman M (1972) Regularization and renormalization of gauge fields. Nucl Phys B 44(1):189–213

    Google Scholar 

  • Wilson KG (1973) Quantum field – theory models in less than 4 dimensions. Phys Rev D 7(10):2911–2926

    Article  MathSciNet  Google Scholar 

  • Wilson KG, Fisher ME (1972) Critical exponents in 3.99 dimensions. Phys Rev Lett 28(4):240–243

    Article  Google Scholar 

  • Wilson KG, Kogut J (1974) The renormalization group and the 𝜖 expansion. Phys Rep 12(2):75–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tarasov, V.E. (2018). Continuum Mechanics of Fractal Media. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_69-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics