Skip to main content

Disorders of Lipid Metabolism

  • Living reference work entry
  • First Online:
Braun-Falco´s Dermatology
  • 280 Accesses

Abstract

Xanthomas are observed in disorders of lipid and lipoprotein metabolism, as well as lymphoproliferative malignancies. Xanthomas can signalize an increased risk for dyslipidemia or disorders of lipid metabolism associated with serious metabolic and cardiovascular diseases, in addition to paraproteinemia and lymphoproliferative disorders. Some types of xanthoma are pathognomonic for special lipid disorders. The most prevalent xanthoma is xanthelasma palpebrarum, which, in association with tuberous and tendinous xanthomas, is typical for autosomal-dominant familial hypercholesterolemia, as along with some rare disorders of sterol metabolism, such as β-sitosterolemia and cerebrotendinous xanthomatosis. Eruptive xanthomas point to severe hypertriglyceridemia, decompensated type 2 diabetes mellitus, and increased risk for acute pancreatitis. Xanthoma striatum palmare is pathognomonic for primary dysbetalipoproteinemia associated with an elevated risk for early onset of coronary and peripheral vascular disease. Diffuse plane xanthomas are found in association with paraproteinemia and lymphoproliferative disorders. The occurrence of xanthomas should alert the dermatologist to unravel its cause and potential risk constellations. This chapter provides basic information on disorders of lipid metabolism associated with xanthoma formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

Lipoproteins and Lipid Metabolism

  • Armstrong EJ, Krueger JG (2016) Lipoprotein metabolism and inflammation in patients with psoriasis. Am J Cardiol 118:603–609

    Article  CAS  PubMed  Google Scholar 

  • Arnao V, Tuttolomondo A, Daidone M, Pinto A (2019) Lipoproteins in atherosclerosis process. Curr Med Chem 26:1525–1543

    Article  CAS  PubMed  Google Scholar 

  • Ashur-Fabian O, Har-Zahav A, Shaish A et al (2010) apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle 9:3761–3770

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29:431–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyahara Y, Bessho K, Kondou H et al (2015) Negative feedback loop of cholesterol regulation is impaired in the livers of patients with Alagille syndrome. Clin Chim Acta 440:49–54

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Tokita Y, Tanaka A, Takahashi S (2019) The VLDL receptor plays a key role in the metabolism of postprandial remnant lipoproteins. Clin Chim Acta 495:382–393

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Sobenin IA (2019) Modified and dysfunctional lipoproteins in atherosclerosis: effectors or biomarkers? Curr Med Chem 26:1512–1524

    Article  CAS  PubMed  Google Scholar 

  • Orsó E, Schmitz G (2017) Lipoprotein(a) and its role in inflammation, atherosclerosis and malignancies. Clin Res Cardiol 12(Suppl 1):31–37

    Google Scholar 

  • Orsó E, Grandl M, Schmitz G (2011) Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages. Chem Phys Lipids 164:479–487

    Article  PubMed  CAS  Google Scholar 

  • Salahuddin T, Natarajan B, Playford MP et al (2015) Cholesterol efflux capacity in humans with psoriasis is inversely related to non-calcified burden of coronary atherosclerosis. Eur Heart J 36:2662–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer EJ, Tsunoda F, Diffenderfer M et al (2016) The measurement of lipids, lipoproteins, apolipoproteins, fatty acids, and sterols, and next generation sequencing for the diagnosis and treatment of lipid disorders. In: De Groot LJ, Beck-Peccoz P, Chrousos G et al (eds) Endotext [Internet]. MDText.com, South Dartmouth

    Google Scholar 

  • Schmitz G, Grandl M (2008) Lipid homeostasis in macrophages – implications for atherosclerosis. Rev Physiol Biochem Pharmacol 160:93–125

    CAS  PubMed  Google Scholar 

  • Schmitz G, Langmann S (2006) The lipid flux rheostat: implications of lipid trafficking pathways. J Mol Med 84:262–265

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Brüning T, Williamson E, Nowicka G (1990) The role of HDL in reverse cholesterol transport and its disturbances in Tangier disease and HDL deficiency with xanthomas. Eur Heart J 11(Suppl E):197–211

    Article  CAS  PubMed  Google Scholar 

  • Sorokin AV, Kotani K, Elnabawi YA et al (2018) Association between oxidation-modified lipoproteins and coronary plaque in psoriasis. Circ Res 123:1244–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S (2017) Triglyceride rich lipoprotein-LPL-VLDL receptor and Lp(a)-VLDL receptor pathways for macrophage foam cell formation. J Atheroscler Thromb 24:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek R, Hovingh GK, Boekholdt SM (2015) Non-high-density lipoprotein cholesterol: current status as cardiovascular marker. Curr Opin Lipidol 26:502–510

    Article  CAS  PubMed  Google Scholar 

Xanthelasma and Xanthomas

  • Al Aboud AM, Al Aboud DM (2019) Xanthelasma palpebrarum. SourceStatPearls [Internet]. StatPearls, Treasure Island, FL

    Google Scholar 

  • Aljenedil S, Ruel I, Watters K, Genest J (2018) Severe xanthomatosis in heterozygous familial hypercholesterolemia. J Clin Lipidol 12:872–877

    Article  PubMed  Google Scholar 

  • Barrett AW, Boyapati RP, Bisase BS et al (2019) Verruciform xanthoma of the oral mucosa: a series of eight typical and three anomalous cases. Int J Surg Pathol 27:492–498

    Article  CAS  PubMed  Google Scholar 

  • Bergman R (1998) Xanthelasma palpebrarum and risk of atherosclerosis. Int J Dermatol 37:343–345

    Article  CAS  PubMed  Google Scholar 

  • Cruz PD Jr, East C, Bergstresser PR (1988) Dermal, subcutaneous, and tendon xanthomas: diagnostic markers for specific lipoprotein disorders. J Am Acad Dermatol 19:95–111

    Article  PubMed  Google Scholar 

  • Frew JW, Murrell DF, Haber RM (2015) Fifty shades of yellow: a review of the xanthodermatoses. Int J Dermatol 54:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Guirado SS, Conejo-Mir JS, Muñoz MA et al (2007) Sitosterol xanthomatosis. J Eur Acad Dermatol Venereol 21:100–103

    Article  CAS  PubMed  Google Scholar 

  • Matsui S, Maruhashi T, Kihara Y, Higashi Y (2019) Giant multiple xanthomas in familial hypercholesterolaemia. Eur Heart J 40:2813

    Article  Google Scholar 

  • Nair PA, Singhal R (2017) Xanthelasma palpebrarum – a brief review. Clin Cosmet Investig Dermatol 11:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen AH, Vaudreuil AM, Huerter CJ (2017) Systematic review of laser therapy in xanthelasma palpebrarum. Int J Dermatol 56:e47–e55

    Article  PubMed  Google Scholar 

  • Orsó E, Grandl M, Schmitz G (2011) Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages. Chem Phys Lipids 164:479–487

    Article  PubMed  CAS  Google Scholar 

  • Sabatine MS (2016) Advances in the treatment of dyslipidemia. Cleve Clin J Med 83:181–186

    Article  PubMed  Google Scholar 

  • Sabatine MS, Giugliano RP, Wiviott SD et al (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Kamath BM, Chitayat D (2016) Alagille syndrome: clinical perspectives. Appl Clin Genet 9:75–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos MA, Foulke G (2019) Koebnerization and eruptive xanthomas. J Gen Intern Med 34:1947–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiff KM, Cohen PR (2017) Vegas (verruciform genital-associated) xanthoma: a comprehensive literature review. Dermatol Ther (Heidelb) 7:65–79

    Article  Google Scholar 

  • Wang H, Shi Y, Guan H et al (2016) Treatment of xanthelasma palpebrarum with intralesional pingyangmycin. Dermatol Surg 42:368–376

    Article  CAS  PubMed  Google Scholar 

  • Winkler JK, Hoffmann J, Enk A, Toberer F (2019) Diffuse plane xanthomas associated with mycosis fungoides. Hautarzt 70:438–442

    Article  PubMed  Google Scholar 

  • Zak A, Zeman M, Slaby A, Vecka M (2014) Xanthomas: clinical and pathophysiological relations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:181–188

    Article  PubMed  Google Scholar 

Primary and Secondary Dyslipoproteinemia

  • Andersen LH, Miserez AR, Ahmad Z, Andersen RL (2016) Familial defective apolipoprotein B-100: a review. J Clin Lipidol 10:1297–1302

    Article  PubMed  Google Scholar 

  • Arca M, Zuliani G, Wilund K et al (2002) Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in AHR: a clinical and molecular genetic analysis. Lancet 359:841–847

    Article  CAS  PubMed  Google Scholar 

  • Basani S, Garg A (2015) Marked lowering of high-density lipoprotein cholesterol levels due to high dose bexarotene therapy. J Clin Lipidol 9:832–836

    Article  PubMed  Google Scholar 

  • Cabello I, Servitje O, Corbella X et al (2017) Omega-3 fatty acids as adjunctive treatment for bexarotene-induced hypertriglyceridaemia in patients with cutaneous T-cell lymphoma. Clin Exp Dermatol 42:276–281

    Article  CAS  PubMed  Google Scholar 

  • Cupido AJ, Reeskamp LF, Kastelein JJP (2017) Novel lipid modifying drugs to lower LDL cholesterol. Curr Opin Lipidol 28:367–373

    Article  CAS  PubMed  Google Scholar 

  • Gabcova-Balaziova D, Stanikova D, Vohnout B et al (2015) Molecular-genetic aspects of familial hypercholesterolemia. Endocr Regul 49:164–181

    Article  CAS  PubMed  Google Scholar 

  • Hansen TJ, Lucking S, Miller JJ et al (2016) Standardized laboratory monitoring with use of isotretinoin in acne. J Am Acad Dermatol 75:323–328

    Article  CAS  PubMed  Google Scholar 

  • Hegele RA, Ginsberg HN, Chapman MJ et al (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2:655–666

    Article  CAS  PubMed  Google Scholar 

  • Jellinger PS, Handelsman Y, Rosenblit PD et al (2017) American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease – Executive summary complete. Endocr Pract 23:479–497

    Article  PubMed  Google Scholar 

  • Joseph L, Robinson JG (2015) Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and the future of lipid lowering therapy. Prog Cardiovasc Dis 58:19–31

    Article  PubMed  Google Scholar 

  • Karr S (2017) Epidemiology and management of hyperlipidemia. Am J Manag Care 23(9 Suppl):S139–S148

    PubMed  Google Scholar 

  • Lee YH, Scharnitz TP, Muscat J et al (2016) Laboratory monitoring during isotretinoin therapy for acne: a systematic review and meta-analysis. JAMA Dermatol 152:35–44

    Article  PubMed  Google Scholar 

  • Melnik BC, Bros U, Plewig G (1987) Evaluation of the atherogenic risk of isotretinoin-induced and etretinate-induced alterations of lipoprotein cholesterol metabolism. J Invest Dermatol 88(3 Suppl):39s–43s

    Article  CAS  PubMed  Google Scholar 

  • Oliva CP, Pisciotta L, Li Volti G et al (2005) Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol 25:411–417

    Article  CAS  Google Scholar 

  • Pajukanta P, Lilja HE, Sinsheimer JS et al (2004) Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 36:322–324

    Article  CAS  Google Scholar 

  • Peros E, Geroldi G, D’Angelo A et al (2004) Apolipoprotein (a) phenotypes are reliable biomarkers for familial aggregation of coronary heart disease. Int J Mol Med 13:243–247

    CAS  PubMed  Google Scholar 

  • Reimund M, Larsson M, Kovrov O et al (2015) Evidence for two distinct binding sites for lipoprotein lipase on glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHP1). J Biol Chem 290:13919–13934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripatti P, Rämö JT, Söderlund S et al (2016) The contribution of GWAS loci in familial dyslipidemias. PLoS Genet 12:e1006078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salakhutdinov NF, Laev SS (2014) Triglyceride-lowering agents. Bioorg Med Chem 22:3551–3564

    Article  CAS  PubMed  Google Scholar 

  • Sarkar T, Sarkar S, Patra A (2018) Low-dose isotretinoin therapy and blood lipid abnormality: a case series with sixty patients. J Family Med Prim Care 7:171–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz G, Orsó E (2015) Lipoprotein(a) hyperlipidemia as cardiovascular risk factor: pathophysiological aspects. Clin Res Cardiol Suppl 10:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Bittner V (2015) Familial hypercholesterolemia – epidemiology, diagnosis, and screening. Curr Atheroscler Rep 17:482

    Article  PubMed  CAS  Google Scholar 

  • Taghizadeh E, Mardani R, Rostami D et al (2019) Molecular mechanisms, prevalence, and molecular methods for familial combined hyperlipidemia disease: a review. J Cell Biochem 120:8891–8898

    Article  CAS  PubMed  Google Scholar 

  • Turgeon RD, Barry AR, Pearson GJ (2016) Familial hypercholesterolemia: review of diagnosis, screening, and treatment. Can Fam Physician 62:32–37

    PubMed  PubMed Central  Google Scholar 

  • Youngblom E, Pariani M, Knowles JW (2014) Familial hypercholesterolemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds) SourceGeneReviews® [Internet]. University of Washington, Seattle; 1993–2019. [updated 8 December 2016]

    Google Scholar 

Sterol Storage Disorders

  • Berge KE, Tian H, Graf GA et al (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporter. Science 290:1771–1775

    Article  CAS  PubMed  Google Scholar 

  • Mandia D, Chaussenot A, Besson G et al (2019) Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. J Neurol 266:2043–2050

    Article  CAS  PubMed  Google Scholar 

  • Matysik S, Orsó E, Black A et al (2011) Monitoring of 7α-hydroxy-4-cholesten-3-one during therapy of cerebrotendinous xanthomatosis: a case report. Chem Phys Lipids 164:530–534

    Article  CAS  PubMed  Google Scholar 

  • Raymond GV, Schiffmann R (2019) Cerebrotendinous xanthomatosis: the rare “treatable” disease you never consider. Neurology 92:61–62

    Article  PubMed  Google Scholar 

  • Yoo EG (2016) Sitosterolemia: a review and update of pathophysiology, clinical spectrum, diagnosis, and management. Ann Pediatr Endocrinol Metab 21:7–14

    Article  PubMed  PubMed Central  Google Scholar 

Xanthomas and Xanthomatization in Nonlipid Disorders

  • Cohen YK, Elpern DJ (2015) Diffuse normolipemic plane xanthoma associated with monoclonal gammopathy. Dermatol Pract Concept 5:65–67

    PubMed  PubMed Central  Google Scholar 

  • Lee WI, Calma A, Drummond C, Cook MC (2019) Xanthoma and paraproteinaemia: a spot diagnosis. BMJ Case Rep 12(2):pii: bcr-2018-227884

    Article  Google Scholar 

  • Szalat R, Arnulf B, Karlin L et al (2011) Pathogenesis and treatment of xanthomatosis associated with monoclonal gammopathy. Blood 118:3777–3784

    Article  CAS  PubMed  Google Scholar 

First Describer

  • Abifadel M, Varret M, Rabes JP et al (2003) Mutations in the PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  PubMed  Google Scholar 

  • Alagille D, Odievre M, Gautier M, Dommergues JP (1975) Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental and sexual development, and cardiac murmur. J Pediatr 86:63–71

    Article  CAS  PubMed  Google Scholar 

  • Berg K (1963) A new serum type system in man. Acta Pathol Microbiol Scand 59:369–382

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya AK, Connor WE (1973) β-Sitosterolemia and xanthomatosis: a newly described lipid storage disease in two sisters. J Clin Invest 52:9a

    Google Scholar 

  • Bodzioch M, Orso E, Klucken J et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  CAS  PubMed  Google Scholar 

  • Bürger M, Grütz O (1932) Über hepatosplenomegale Lipidose mit xanthomatösen Veränderungen in Haut und Schleimhaut. Arch Dermatol Syph 166:542–547

    Article  Google Scholar 

  • Fredrickson DS, Altrocchi PH, Avioli LV et al (1961) Tangier disease – combined clinical staff conference at the National Institutes of Health. Ann Intern Med 55:1016–1031

    Article  Google Scholar 

  • Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins – an integrated approach to mechanism and disorders. N Engl J Med 276:32–44 94–103, 148–156, 215–226, 273–281

    Article  Google Scholar 

  • Garcia CK, Wilund K, Arca M et al (2001) Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292:1394–1398

    Article  CAS  PubMed  Google Scholar 

  • Gofman JW, DeLalla O, Glazier F et al (1954) The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary heart disease. Plasma 2:413–428

    Google Scholar 

  • Goldstein JL, Brown MS (1973) Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with overproduction of cholesterol. Proc Natl Acad Sci U S A 20:2804–2806

    Article  Google Scholar 

  • Goldstein JL, Scrap HG, Hazzard WR et al (1973) Hyperlipidemia in coronary artery disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52:1533–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haddad L, Day IN, Hunt S et al (1999) Evidence for a third genetic locus causing familial hypercholesterolemia: a non-LDLR, non-APOB kindred. J Lipid Res 40:1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Havel R, Gordon RS (1960) Idiopathic hyperlipidemia: metabolic studies in an affected family. J Clin Invest 39:1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innerarity TL, Weisgraber KH, Arnold KS et al (1987) Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A 84:6919–6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khachadurian AK, Uthman M (1973) Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 cases. Nutr Metab 15:132–140

    Article  CAS  PubMed  Google Scholar 

  • Mahley RW, Angelin B (1984) Type III hyperlipoproteinemia: recent insights into the genetic defect of familial dysbetalipoproteinemia. Adv Intern Med 29:385–411

    CAS  PubMed  Google Scholar 

  • Müller C (1938) Xanthomata, hypercholesterinemia, angina pectoris. Acta Medica Scand Suppl 89:75–80

    Google Scholar 

  • Soria LF, Ludwig EH, Clarke HR et al (1989) Association between a specific apolipoprotein B mutation and familial defective apo B-100. Proc Natl Acad Sci U S A 86:587–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada H, Kawashiri MA, Ohtani R et al (2011) A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis 219:663–666

    Article  CAS  PubMed  Google Scholar 

  • Thannhauser SJ, Magendantz H (1938) The different clinical groups of xanthomatous diseases: a clinical physiological study of 22 cases. Ann Intern Med 11:1662–1746

    Article  CAS  Google Scholar 

  • Utermann G, Jaeschke M, Menzel J (1975) Familial hyperlipoproteinemia type III: deficiency of a specific apolipoprotein (apo E-III) in the very-low-density lipoproteins. FEBS Lett 56:352–355

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert L, Scherer HJ, Epstein E (1937) Une forme cérébrale de la cholestérinose géneralisée. Masson, Paris

    Google Scholar 

  • Vega GL, Grundy SM (1986) In vitro evidence for reduced binding of low density lipoproteins to receptors as a cause of primary hypercholesterolemia. J Clin Invest 78:1410–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson GH, Miller V (1973) Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child 48:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Melnik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Melnik, B. (2020). Disorders of Lipid Metabolism. In: Plewig, G., French, L., Ruzicka, T., Kaufmann, R., Hertl, M. (eds) Braun-Falco´s Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58713-3_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58713-3_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58713-3

  • Online ISBN: 978-3-662-58713-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics