Skip to main content

Ammonium Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 237 Accesses

Introduction

Ammonium ILs are salts comprising an ammonium-based cation and an organic or inorganic anion (Fig. 1). The cationic part of ammonium ILs is usually based on primary, secondary, and tertiary amines or quaternary ammonium cation. The anionic part can be more variable from simple ions such as halides, chloroaluminate, tetrafluoroborate, sulfonates, and carboxylates to complex anions, e.g., anions of natural origin. According to the feature of the ammonium cation, ammonium-type ILs can be divided into two main types: protic ammonium ILs and aprotic ammonium ILs. A key feature of protic ammonium ILs is that they have an available or more than one proton on the N atom of cation. By convention, the rest of the ammonium-based ILs, which have no proton on the cation, can be classified as aprotic ammonium ILs. It is worth mentioning that ammonium ILs of dications with linked protic and aprotic centers have also been reported [1, 2].

Fig. 1
figure 1

Typical structure of ammonium-based ILs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nuthakki B, Greaves TL, Krodkiewska I, Weerawardena A, Iko Burgar M, Mulder RJ, Drummond CJ (2007) Protic ionic liquids and ionicity. Aust J Chem 60:21–28

    Google Scholar 

  2. Greaves TL, Drummond CJ (2015) Protic ionic liquids: evolving structure−property relationships and expanding applications. Chem Rev 115:11379–11448

    Google Scholar 

  3. Gabriel S, Weiner J (1888) Ueber einige abkömmlinge des propylamins. Ber Dtsch Chem Ges 21:2669–2679

    Google Scholar 

  4. Menschutkin N (1890) Beiträge zur kenntnis der affinitätskoeffizienten der alkylhaloide und der organischen amine. Z Phys Chem 5:589–601

    Google Scholar 

  5. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Google Scholar 

  6. Amarasekara AS (2016) Acidic ionic liquids. Chem Rev 116:6133–6183

    Google Scholar 

  7. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci 8:405–422

    Google Scholar 

  8. Herfort IM, Schneider H (1991) Spectroscopic studies of the solvent polarities of room-temperature liquid ethylammonium nitrate and its mixtures with polar solvents. Liebigs Ann Chem:27–31

    Google Scholar 

  9. Achterhof M, Conway RF, Boord CE (1931) The sulfur derivatives of the simple amines. I. Amine hydrosulfides. J Am Chem Soc 53:2682–2688

    Google Scholar 

  10. Mathes RA, Stewart FD, Swedish F (1948) A synthesis of amine salts of thiocyanic acid. J Am Chem Soc 70:3455

    Google Scholar 

  11. Poole CF, Kersten BR, Ho SSJ, Coddens ME, Furton KG (1986) Organic salts, liquids at room temperature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425

    Google Scholar 

  12. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Google Scholar 

  13. Poole CF (2014) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82

    Google Scholar 

  14. Angell CA, Byrne N, Belieres JP (2007) Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc Chem Res 40:1228–1236

    Google Scholar 

  15. Burrell GL, Burgar IM, Separovic F, Dunlop NF (2010) Preparation of protic ionic liquids with minimal water content and 15N NMR study of proton transfer. Phys Chem Chem Phys 12:1571–1577

    Google Scholar 

  16. Weng J, Wang C, Li H, Wang Y (2006) Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction. Green Chem 8:96–99

    Google Scholar 

  17. Attri P, Venkatesu P, Hofman T (2011) Temperature dependence measurements and structural characterization of trimethyl ammonium ionic liquids with a highly polar solvent. J Phys Chem B 115:10086–10097

    Google Scholar 

  18. Miran MS, Yasuda T, Susan MABH, Dokko K, Watanabe M (2014) Binary protic ionic liquid mixtures as a proton conductor: high fuel cell reaction activity and facile proton transport. J Phys Chem C 118:27631–27639

    Google Scholar 

  19. Meng Y, Liu J, Li Z, Wei H (2014) Synthesis and physicochemical properties of two SO3H-functionalized ionic liquids with hydrogen sulfate anion. J Chem Eng Data 59:2186–2195

    Google Scholar 

  20. Liu MS, Li X, Liang L, Sun JM (2016) Protonated triethanolamine as multi-hydrogen bond donors catalyst for efficient cycloaddition of CO2 to epoxides under mild and cocatalyst-free conditions. J CO2 Util 16:384–390

    Google Scholar 

  21. Xiang J, Chen R, Wu F, Li L, Chen S, Zou Q (2011) Physicochemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors. Electrochim Acta 56:7503–7509

    Google Scholar 

  22. Estager J, Holbrey JD, Swadźba-Kwaśny M (2014) Halometallate ionic liquids–revisited. Chem Soc Rev 43:847–886

    Google Scholar 

  23. Bui TLT, Korth W, Jess A (2012) Influence of acidity of modified chloroaluminate based ionic liquid catalysts on alkylation of iso-butene with butene-2. Catal Commun 25:118–124

    Google Scholar 

  24. Swain CG, Ohno A, Roe DK, Brown R, Maugh T (1967) Tetrahexylammonium benzoate, a liquid salt at 25°, a solvent for kinetics or electrochemistry. J Am Chem Soc 89:2648–2649

    Google Scholar 

  25. Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11:752–766

    Google Scholar 

  26. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157

    Google Scholar 

  27. Li H, Zhao G, Liu F, Zhang S (2013) Physicochemical characterization of MFm−‑based ammonium ionic liquids. J Chem Eng Data 58:1505–1515

    Google Scholar 

  28. Messadi A, Mohamadou A, Boudesocque S, Dupont L, Guillon E (2013) Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: cation exchange versus ion-pair extraction. Sep Purif Technol 107:172–178

    Google Scholar 

  29. Lorenzo M, Vilas M, Verdía P, Villanueva M, Salgado J, Tojo E (2015) Long-term thermal stabilities of ammonium ionic liquids designed as potential absorbents of ammonia. RSC Adv 5:41278–41284

    Google Scholar 

  30. Diez V, DeWeese A, Kalb RS, Blauch DN, Socha AM (2019) Cellulose dissolution and biomass pretreatment using quaternary ammonium ionic liquids prepared from H-, G-, and S‑type lignin-derived benzaldehydes and dimethyl carbonate. Ind Eng Chem Res 58:16009–16017

    Google Scholar 

  31. Wang YM, Ulrich V, Donnelly GF, Lorenzini F, Marr AC, Marr PC (2015) A recyclable acidic ionic liquid gel catalyst for dehydration: comparison with an analogous SILP catalyst. ACS Sustain Chem Eng 3:792–796

    Google Scholar 

  32. Fang D, Yang J, Jiao C (2011) Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal 1:42–47

    Google Scholar 

  33. Hartman RL, Jensen KF (2009) Microchemical systems for continuous-flow synthesis. Lab Chip 9:2495–2507

    Google Scholar 

  34. Zhang H, Shang M, Song Y, Su Y (2019) Continuous synthesis of tetraalkylammonium-based ethyl sulphate ionic liquid and its kinetic study in microreactors. AIChE J 65:1245–1255

    Google Scholar 

  35. Liu S, Wang Z, Li K, Li L, Yu S, Liu F, Song Z (2013) Brȼnsted-Lewis acidic ionic liquid for the one-pot synthesis of biodiesel from waste-oil. J Renew Sust Energ 5:023111

    Google Scholar 

  36. Mirjafari A, Pham LN, McCabe JR, Mobarrez N, Salter EA, Wierzbicki A, West KN, Sykora RE, Davis JH Jr (2013) Building a bridge between aprotic and protic ionic liquids. RSC Adv 3:337–340

    Google Scholar 

  37. Li X, Lin Q, Cao R (2014) A convenient approach for the synthesis of 1,3,5-trioxanes under solvent-free conditions at room temperature. Monatsh Chem 145:1017–1022

    Google Scholar 

  38. Pernak J, Smiglak M, Griffin ST, Hough WL, Wilson TB, Pernak A, Zabielska-Matejuk J, Fojutowski A, Kita K, Rogers RD (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8:798–806

    Google Scholar 

  39. Diabate PD, Boudesocque S, Mohamadou A, Dupont L (2020) Separation of cobalt, nickel and copper with task-specific amido functionalized glycine-betaine-based ionic liquids. Sep Purif Technol 244:116782

    Google Scholar 

  40. Gupta GR, Chaudhari GR, Tomar PA, Gaikwad Y, Rameez A, Pandya GH, Waghulade GP, Patil KJ (2013) Mass spectrometry of ionic liquids: ESI-MS/MS studies. Asian J Chem 25:8261–8265

    Google Scholar 

  41. Wang B, Qin L, Mu T, Xue Z, Gao G (2017) Are ionic liquids chemically stable? Chem Rev 117:7113–7131

    Google Scholar 

  42. Pisarova L, Gabler C, Dörr N, Pittenauer E, Allmaie G (2012) Thermo-oxidative stability and corrosion properties of ammonium based ionic liquids. Tribol Int 46:73–83

    Google Scholar 

  43. Estager J, Holbrey JD, Swadźba-Kwaśny M (2014) Halometallate ionic liquids–revisited. Chem Soc Rev 43:847–886

    Google Scholar 

  44. Weingärtner H (2013) NMR studies of ionic liquids: structure and dynamics. Curr Opin Colloid Interface Sci 18:183–189

    Google Scholar 

  45. Liu Y, Hu R, Xu C, Su H (2008) Alkylation of isobutene with 2-butene using composite ionic liquid catalysts. Appl Catal A: Gen 346:189–193

    Google Scholar 

  46. Shen M, Zhang Y, Chen K, Che S, Yao J, Li H (2017) Ionicity of protic ionic liquid: quantitative measurement by spectroscopic methods. J Phys Chem B 121:1372–1376

    Google Scholar 

  47. Paschoal VH, Faria LFO, Ribeiro MCC (2017) Vibrational spectroscopy of ionic liquids. Chem Rev 117:7053–7112

    Google Scholar 

  48. Stoyanov ES, Kim K-C, Reed CA (2006) An infrared νNH scale for weakly basic anions. Implications for single-molecule acidity and superacidity. J Am Chem Soc 128:8500–8508

    Google Scholar 

  49. Bodo E, Postorino P, Mangialardo S, Piacente G, Ramondo F, Bosi F, Ballirano P, Caminiti R (2011) Structure of the molten salt methyl ammonium Nitrate explored by experiments and theory. J Phys Chem B 115:13149–13161

    Google Scholar 

  50. Mondal A, Balasubramanian S (2015) Vibrational signatures of cation−anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study. J Phys Chem B 119:1994–2002

    Google Scholar 

  51. Horikawa M, Akai N, Kawai A, Shibuya K (2014) Vaporization of protic ionic liquids studied by matrix-isolation fourier transform infrared spectroscopy. J Phys Chem A 118:3280–3287

    Google Scholar 

  52. Hoque M, Thomas ML, Miran MS, Akiyama M, Marium M, Ueno K, Dokko K, Watanabe M (2018) Protic ionic liquids with primary alkylamine-derived cations: the dominance of hydrogen bonding on observed physicochemical properties. RSC Adv 8:9790–9794

    Google Scholar 

  53. Patil AB, Bhanage BM (2018) Assessing ionicity of protic ionic liquids by far IR spectroscopy. J Mol Liq 252:180–183

    Google Scholar 

  54. Luo J, Conrad O, Vankelecom IFJ (2012) Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater Chem 22:20574–20579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, L. (2021). Ammonium Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics