Skip to main content

Capacitance with Different Electrode Surface Topology

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 70 Accesses

Introduction

This chapter discusses simulation works on the topic of capacitance dependence on voltage and electrode surface structure. Flat electrode surfaces generated a weak dependence of DC versus voltage, albeit the typical bell-shaped or U-shaped features from basic theory were noticeable. In contrast, rough electrodes generated sharp peaks in DC at potentials where surface was abruptly depopulated of counter-ions. Surface curvature and roughness can significantly increase the integral electrode capacitance and the stored energy. Nanoporous electrodes can further increase the capacitances if pore widths match the size of the ions, or pores have rough patterns on their surface.

The amount of energy stored by the electric double layer capacitors (EDLCs) or supercapacitors strongly depends on the ability of electrolyte to accommodate charge separation in the narrow (few nanometers wide) layer near the electrode surface or inside electrode nanopores. For open-structure electrodes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Druschler M, Borisenko N, Wallauer J, Winter C, Huber B, Endres F, Roling B (2012) New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics. Phys Chem Chem Phys 14:5090–5099

    Article  PubMed  CAS  Google Scholar 

  2. Cannes C, Cachet H, Debiemme-Chouvy C, Deslouis C, de Sanoit J, Le Naour C, Zinovyeva VA (2013) Double layer at [BuMeIm][Tf2N] ionic liquid–Pt or −C material interfaces. J Phys Chem C 117:22915–22925

    Article  CAS  Google Scholar 

  3. Alam MT, Islam MM, Okajima T, Ohsaka T (2007) Measurements of differential capacitance at mercury/room-temperature ionic liquids interfaces. J Phys Chem C 111:18326–18333

    Article  CAS  Google Scholar 

  4. Costa R, Pereira CM, Silva AF (2015) Charge storage on ionic liquid electric double layer: the role of the electrode material. Electrochim Acta 167:421–428

    Article  CAS  Google Scholar 

  5. Su Y-Z, Fu Y-C, Yan J-W, Chen Z-B, Mao B-W (2009) Double layer of Au(100)/ionic liquid interface and its stability in imidazolium-based ionic liquids. Angew Chem 121:5250–5253

    Article  Google Scholar 

  6. Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J (2010) Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys Chem Chem Phys 12:12499–12512

    Article  CAS  PubMed  Google Scholar 

  7. Silva F, Gomes C, Figueiredo M, Costa R, Martins A, Pereira CM (2008) The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – effect of temperature on the differential capacitance. J Electroanal Chem 622:153–160

    Article  CAS  Google Scholar 

  8. Baldelli S (2008) Surface structure at the ionic liquid−electrified metal interface. Acc Chem Res 41:421–431

    Article  CAS  PubMed  Google Scholar 

  9. Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111:5545–5557

    Article  CAS  PubMed  Google Scholar 

  10. Vatamanu J, Borodin O, Olguin M, Yushin G, Bedrov D (2017) Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. J Mater Chem A 5:21049

    Article  CAS  Google Scholar 

  11. Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K (2018) Design of supercapacitor electrodes using molecular dynamics simulations. Nano Micro Lett 10:33

    Article  CAS  Google Scholar 

  12. Pavaskar G, Ramakrishnasubramanian K, Kandagal VS, Kumar P (2018) Modeling electric double-layer capacitors using charge variation methodology in gibbs ensemble. Front Energy Res 5:1

    Google Scholar 

  13. Tazi S, Salanne M, Simon C, Turq P, Pounds M, Madden PA (2010) Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. J Phys Chem B 114:8453–8459

    Article  CAS  PubMed  Google Scholar 

  14. Ho TA, Striolo A (2013) Capacitance enhancement via electrode patterning. J Chem Phys 139:204708

    Article  PubMed  CAS  Google Scholar 

  15. Vatamanu J, Cao L, Borodin O, Bedrov D, Smith GD (2011) On the influence of surface topography on the electric double layer structure and differential capacitance of graphite/ionic liquid interfaces. J Phys Chem Lett 2:2267–2272

    Article  CAS  Google Scholar 

  16. Xing L, Vatamanu J, Smith GD, Bedrov D (2012) Nanopatterning of electrode surfaces as a potential route to improve the energy density of electric double-layer capacitors: insight from molecular simulations. J Phys Chem Lett 3:1124–1129

    Article  CAS  PubMed  Google Scholar 

  17. Lu P, Dai Q, Wu L, Liu X (2017) Structure and capacitance of electrical double layers at the graphene–ionic liquid interface. Appl Sci 7:939

    Article  CAS  Google Scholar 

  18. Vatamanu J, Bedrov D (2015) Capacitive energy storage: current and future challenges. J Phys Chem Lett 6:3594–3609

    Article  CAS  PubMed  Google Scholar 

  19. Bedrov D, Vatamanu J, Hu Z (2015) Ionic liquids at charged surfaces: insight from molecular simulations. J Non-Cryst Solids 407:339–348

    Article  CAS  Google Scholar 

  20. Hu Z, Vatamanu J, Borodin O, Bedrov D (2014) A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes. Electrochim Acta 145:40–52

    Article  CAS  Google Scholar 

  21. Pinkert K, Oschatz M, Borchardt L, Klose M, Zier M, Nickel W, Giebeler L, Oswald S, Kaskel S, Eckert J (2014) Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces. ACS Appl Mater Interfaces 6:2922–2928

    Article  CAS  PubMed  Google Scholar 

  22. Chakrabarti MH, Brandon NP, Hajimolana SA, Tariq F, Yufit V, Hashim MA, Hussain MA, Low CTJ, Aravind PV (2014) Application of carbon materials in redox flow batteries. J Power Sources 253:150–166

    Article  CAS  Google Scholar 

  23. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130:2730–2731

    Article  CAS  PubMed  Google Scholar 

  24. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  PubMed  Google Scholar 

  25. Markoulidis F, Lei C, Lekakou C, Duff D, Khalil S, Martorana B, Cannavaro I (2014) A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes. Carbon 68:58–66

    Article  CAS  Google Scholar 

  26. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–1310

    Article  CAS  Google Scholar 

  27. Hsia B, Kim MS, Luna LE, Mair NR, Kim Y, Carraro C, Maboudian R (2014) Templated 3D ultrathin CVD graphite networks with controllable geometry: synthesis and application as supercapacitor electrodes. ACS Appl Mater Interfaces 6:18413–18417

    Article  CAS  PubMed  Google Scholar 

  28. Vatamanu J, Vatamanu M, Bedrov D (2015) Non-faradaic energy storage by room temperature ionic liquids in nanoporous electrodes. ACS Nano 9:5999–6017

    Article  CAS  PubMed  Google Scholar 

  29. Kondrat S, Kornyshev A (2011) Superionic state in double-layer capacitors with nanoporous electrodes. J Phys Condens Matter 23:022201

    Article  CAS  PubMed  Google Scholar 

  30. Xing L, Vatamanu J, Borodin O, Bedrov D (2012) On the atomistic nature of capacitance enhancement generated by ionic liquid electrolyte confined in subnanometer pores. J Phys Chem Lett 4:132–140

    Article  PubMed  CAS  Google Scholar 

  31. Kondrat S, Georgi N, Fedorov MV, Kornyshev AA (2011) A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Phys Chem Chem Phys 13:11359–11366

    Article  CAS  PubMed  Google Scholar 

  32. Feng G, Cummings PT (2011) Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett 2:2859–2864

    Article  CAS  Google Scholar 

  33. Wu P, Huang J, Meunier V, Sumpter BG, Qiao R (2011) Complex capacitance scaling in ionic liquids-filled nanopores. ACS Nano 5:9044–9051

    Article  CAS  PubMed  Google Scholar 

  34. Qiu Y, Chen Y (2015) Capacitance performance of sub-2 nm graphene nanochannels in aqueous electrolyte. J Phys Chem C 119:23813–23819

    Article  CAS  Google Scholar 

  35. Vatamanu J, Hu Z, Bedrov D, Perez C, Gogotsi Y (2013) Increasing energy storage in electrochemical capacitors with ionic liquid electrolytes and nanostructured carbon electrodes. J Phys Chem Lett 4:2829–2837

    Article  CAS  Google Scholar 

  36. Jain SK, Pellenq RJM, Pikunic JP, Gubbins KE (2006) Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Langmuir 22:9942–9948

    Article  CAS  PubMed  Google Scholar 

  37. Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna PL, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun 4:2701

    Google Scholar 

  38. Varanasi SR, Bhatia SK (2016) Optimal electrode mass ratio in nanoporous carbon electrochemical supercapacitors. J Phys Chem C 120:27925–27933

    Article  CAS  Google Scholar 

  39. Varanasi SR, Farmahini AH, Bhatia SK (2015) Complementary effects of pore accessibility and decoordination on the capacitance of nanoporous carbon electrochemical supercapacitors. J Phys Chem C 119:28809–28818

    Article  CAS  Google Scholar 

  40. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  41. Centeno TA, Sereda O, Stoeckli F (2011) Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. Phys Chem Chem Phys 13:12403–12406

    Article  CAS  PubMed  Google Scholar 

  42. Jiang D-e, Wu J (2014) Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. Nanoscale 6:5545–5550

    Article  CAS  PubMed  Google Scholar 

  43. Jiang D-e, Jin Z, Henderson D, Wu J (2012) Solvent effect on the pore-size dependence of an organic electrolyte supercapacitor. J Phys Chem Lett 3:1727–1731

    Article  CAS  PubMed  Google Scholar 

  44. Jiang D-e, Jin Z, Wu J (2011) Oscillation of capacitance inside nanopores. Nano Lett 11:5373–5377

    Article  CAS  PubMed  Google Scholar 

  45. Henderson D (2012) Oscillations in the capacitance of a nanopore containing an electrolyte due to pore width and nonzero size ions. J Colloid Interface Sci 374:345–347

    Article  CAS  PubMed  Google Scholar 

  46. Wu P, Huang J, Meunier V, Sumpter BG, Qiao R (2012) Voltage dependent charge storage modes and capacity in subnanometer pores. J Phys Chem Lett 3:1732–1737

    Article  CAS  PubMed  Google Scholar 

  47. Kiyohara K, Shioyama H, Sugino T, Asaka K (2012) Phase transition in porous electrodes. II. Effect of asymmetry in the ion size. J Chem Phys 136:094701

    Article  PubMed  CAS  Google Scholar 

  48. Kiyohara K, Sugino T, Asaka K (2011) Phase transition in porous electrodes. J Chem Phys 134:154710

    Article  PubMed  CAS  Google Scholar 

  49. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS (2014) Capacitance of carbon-based electrical double-layer capacitors. Nat Commun 5:3317

    Google Scholar 

  50. Doh C-H, Kim H-S, Moon S-I (2001) A study on the irreversible capacity of initial doping/undoping of lithium into carbon. J Power Sources 101:96–102

    Article  CAS  Google Scholar 

  51. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43:1293–1302

    Article  CAS  Google Scholar 

  52. Jänes A, Permann L, Arulepp M, Lust E (2004) Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochem Commun 6:313–318

    Article  CAS  Google Scholar 

  53. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S (2007) High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  CAS  Google Scholar 

  54. Kornyshev AA (2013) The simplest model of charge storage in single file metallic nanopores. Faraday Discuss 164:117–133

    Article  CAS  PubMed  Google Scholar 

  55. Chimola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  56. Lin R, Taberna PL, Chimola J, Guay D, Gogotsi Y, Simon P (2009) Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors. J Electrochem Soc 156:A7–A12

    Article  CAS  Google Scholar 

  57. Wu CH, Deng SX, Wang H, Sun YX, Liu JB, Yan H (2014) Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl Mater Interfaces 6(2):1106–1112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenel Vatamanu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bedrov, D., Vatamanu, J. (2021). Capacitance with Different Electrode Surface Topology. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics