Skip to main content

Advances in Monte Carlo Simulation of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Room-temperature ionic liquids can be defined as solvents that are composed of molecular cations and anions with melting point below 100 °C. The cations are usually derived from organic functional groups such as imidazolium, pyridinium, pyrrolidinium, triazolium, tetraalkylphosphonium, and tetraalkylammonium, while the anion can be an organic moiety, for example, acetate, lactate, benozate, etc., or inorganic, viz. halides, bis(trifluoromethanesulfonyl)imide, tetrafluoroborate, hexafluorophosphate, etc., in nature. The conformational flexibility and charge delocalization inherent in the various ions lead to packing frustration lowering the melting point. The history of ionic liquids dates back to 1888 when the first ionic liquid ethanolammonium nitrate (melting point 52–55 °C) was reported [1]. An early report involving a room-temperature ionic liquid, ethylammonium nitrate (melting point 12 °C) appeared [2]. More recently, the development of ionic liquids as electrolyte...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gabriel S, Weiner J (1888) Ueber einige abkommlinge des propylamins. Chem Ber 21:2669–2679

    Article  Google Scholar 

  2. Walden P (1914) Molecular weights and electrical conductivity of several fused salts, Bull Russian Acad Sci 405–422

    Google Scholar 

  3. Chum HL, Koch VR, Miller LL, Osteryoung RA (1975) Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J Am Chem Soc 97(11):3264–3265

    Article  CAS  Google Scholar 

  4. Wilkes JS, Leviskly JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem 21:1263–1264

    Article  CAS  Google Scholar 

  5. Gale RJ, Osteryoung RA (1979) Potentiometric investigation of dialuminium heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem 18:1603–1605

    Article  CAS  Google Scholar 

  6. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965–967

    Article  Google Scholar 

  7. https://www.chevron.com/stories/chevron-and-honeywell-announce-start-up-of-isoalky-ionic-liquids-alkylation-unit. Accessed: 2021-07-06

  8. Abai M, Atkins MP, Hassan A, Holbrey JD, Kuah Y, Nockemann P, Oliferenko AA, Plechkova NV, Rafeen S, Rahman AA, Ramli R, Shariff SM, Seddon KR, Srinivasan G, Zou Y (2015) An ionic liquid process for mercury removal from natural gas. Dalton Trans 44(18):8617–8624

    Article  CAS  PubMed  Google Scholar 

  9. Sidisky LM, Buchanan MD (2008) Supelco patented ionic liquid GC phase technology, Supelco. Reporter 26:3–4

    Google Scholar 

  10. Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106(29):7315–7320

    Article  CAS  Google Scholar 

  11. Lei Z, Dai C, Chen B (2014) Gas solubility in ionic liquids. Chem Rev 114(2):1289–1326

    Article  CAS  PubMed  Google Scholar 

  12. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(6):2739–2751

    Article  CAS  Google Scholar 

  13. Almantariotis D, Stevanovic S, Fandino O, Pensado AS, Padua AAH, Coxam JY, Costa Gomes MF (2012) Absorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (Cnmim, n= 2,4,6) tris(pentafluoroethyl)trifluorophosphate ionic liquids (eFAP). J Phys Chem B 116(26):77287738

    Article  Google Scholar 

  14. Bidikoudi M, Stergiopoulos T, Likodimos V, Romanos GE, Francisco M, Iliev B, Adamova G, Schubert TJS, Falaras P (2013) Ionic liquid redox electrolytes based on binary mixtures of 1-alkyl-methylimidazolium tricyanomethanide with 1-methyl-3-propylimidazolium iodide and implication in dye-sensitized solar cells. J Mater Chem A 1(35):10474–10486

    Article  CAS  Google Scholar 

  15. Pinilla C, Del Popolo M, Lynden-Bell R, Kohanoff J (2005) Structure and dynamics of a confined ionic liquid. Topics of relevance to dye-sensitized solar cells. J Phys Chem B 109(38):17922–17927

    Article  CAS  PubMed  Google Scholar 

  16. Wang P, Zakeeruddin S, Moser J, Gratzel M (2003) A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J Phys Chem B 107(48):13280–13285

    Article  CAS  Google Scholar 

  17. Wasserscheid P, Keim W (2000) Ionic liquids – new “solutions” for transition metal catalysis. Angew Chem Int Ed 39(21):3772–3789

    Article  CAS  Google Scholar 

  18. Riisagera A, Fehrmanna R, Haumannb M, Wasserscheidb P (2006) Supported ionic liquids: versatile reaction and separation media. Top Catal 40(1–4):91–102

    Article  Google Scholar 

  19. Lane GH, Bayley PM, Clare BR, Best AS, Macfarlane DR, Forsyth M, Hollenkamp AF (2010) Ionic liquid electrolyte for lithium metal batteries: physical, electrochemical, and interfacial studies of n-methyl-n-butylmorpholinium bis(fluorosulfonyl)imide. J Phys Chem C 114(49):21775–21785

    Article  CAS  Google Scholar 

  20. Costa LT, Sun B, Jeschull F, Brandell D (2015) Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend. J Chem Phys 143(2):024904. 024904–1–024904-9

    Article  PubMed  Google Scholar 

  21. Basile A, Yoon H, MacFarlane DR, Forsyth M, Howlett PC (2016) Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids. Electrochem Commun 71(C):48–51

    Article  CAS  Google Scholar 

  22. Szymczak J, Legeai S, Michel S, Diliberto S, Stein N, Boulanger C (2014) Electrodeposition of stoichiometric bismuth telluride Bi2Te3 using a piperidinium ionic liquid binary mixture. Electrochim Acta 137:586–594

    Article  CAS  Google Scholar 

  23. Liu Z, Cui T, Lu T, Shapouri Ghazvini M, Endres F (2016) Anion effects on the solid/ionic liquid interface and the electrode-position of zinc. J Phys Chem C 120:20224–20231

    Article  CAS  Google Scholar 

  24. Liu J, Jiang G, Jonsson J (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24(1):20–27

    Article  Google Scholar 

  25. Pino V, Afonso AM (2012) Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography – a review. Anal Chim Acta 714:20–37

    Article  CAS  PubMed  Google Scholar 

  26. Tang S-F, Mudring A-V (2019) Highly luminescent ionic liquids based on complex lanthanide Saccharinates. Inorg Chem 58(17):11569–11578

    Article  CAS  PubMed  Google Scholar 

  27. Plechkova N, Seddon K (2008) Applications of ionic liquids in chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor U, Shah JK (2018) Thermophysical properties of imidazolium-based binary ionic liquid mixtures using molecular dynamics simulations. J Chem Eng Data 63(7):2512–2521

    Article  CAS  Google Scholar 

  29. Kapoor U, Shah JK (2016) Preferential ionic interactions and microscopic structural changes drive nonideality in the binary ionic liquid mixtures as revealed from molecular simulations. Ind Eng Chem Res 55:13132–13146

    Article  CAS  Google Scholar 

  30. Teles ARR, Correia H, Maximo GJ, Rebelo LPN, Freire MG, Pereiro AB, Coutinho JAP (2016) Solid-liquid equilibria of binary mixtures offluorinated ionic liquids. Phys Chem Chem Phys 18(36):25741–25750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Podgorsek A, Jacquemin J, Padua AAH, Costa Gomes MF (2016) Mixing enthalpy for binary mixtures containing ionic liquids. Chem Rev 116(10):6075–6106

    Article  CAS  PubMed  Google Scholar 

  32. Mezzetta A, Rodriguez Douton MJ, Guazzelli L, Pomelli CS, Chiappe C (2019) Microheterogeneity in ionic liquid mixtures: hydrogen bonding, dispersed ions, and dispersed ion clusters. Aust J Chem 72(2):106–106

    Article  CAS  Google Scholar 

  33. Pinto AM, Rodriguez H, Colon YJ, Arce A Jr, Arce A, Soto A (2013) Absorption of carbon dioxide in two binary mixtures of ionic liquids. Ind Eng Chem Res 52(17):5975–5984

    Article  CAS  Google Scholar 

  34. Men S, Licence P (2017) Tuning the electronic environment of the anion by using binary ionic liquid mixtures. Chem Phys Lett 681:40–43

    Article  CAS  Google Scholar 

  35. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  36. Shah JK, Marin-Rimoldi E, Mullen RG, Keene BP, Khan S, Paluch AS, Rai N, Romanielo LL, Rosch TW, Yoo B, Maginn EJ (2017) Cassandra: an open source Monte Carlo package for molecular simulation. J Comput Chem 38(19):1727–1739

    Article  CAS  PubMed  Google Scholar 

  37. Martin MG (2013) MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol Simul 39(14–15):1212–1222

    Article  CAS  Google Scholar 

  38. Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2015) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul 42(2):81–101

    Article  Google Scholar 

  39. Deublein S, Eckl B, Stoll J, Lishchuk SV, Guevara-Carrion G, Glass CW, Merker T, Bernreuther M, Hasse H, Vrabec J (2011) ms2: a molecular simulation tool for thermodynamic properties. Comput Phys Commun 182(11):2350–2367

    Article  CAS  Google Scholar 

  40. Shah JK, Brennecke JF, Maginn EJ (2002) Thermodynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate from Monte Carlo simulations. Green Chem 4(2):112–118

    Article  CAS  Google Scholar 

  41. Shi W, Sorescu DC (2010) Molecular simulations of CO2 and H2 Sorption into ionic liquid 1- n-hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf 2N]) confined in carbon nanotubes. J Phys Chem B 114(46):15029–15041

    Article  CAS  PubMed  Google Scholar 

  42. Widom B (1963) Some topics in the theory of fluids. J Chem Phys 39(11):2808–2812

    Article  CAS  Google Scholar 

  43. Shah J, Maginn E (2004) A Monte Carlo simulation study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate: liquid structure, volumetric properties and infinite dilution solution thermodynamics of CO2. Fluid Phase Equilib 222:195–203

    Article  Google Scholar 

  44. Shah JK, Maginn EJ (2005) Monte Carlo simulations of gas solubility in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 109(20):10395–10405

    Article  CAS  PubMed  Google Scholar 

  45. Lyubartsev A, Martsinovski A, Shevkunov s, Vorontsovvelyaminov P (1992) New approach to Monte-Carlo calculation of the free-energy – method of expanded ensembles. J Chem Phys 96(3):1776–1783

    Article  CAS  Google Scholar 

  46. Urukova I, Vorholz J, Maurer G (2005) Solubility of CO2, CO, and H-2 in the ionic liquid [bmim][PF6] from Monte Carlo simulations. J Phys Chem B 109:12154–12159

    Article  CAS  PubMed  Google Scholar 

  47. Shi W, Maginn EJ (2008) Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]). J Phys Chem B 112(7):2045–2055

    Article  CAS  PubMed  Google Scholar 

  48. Shi W, Maginn E (2008) Molecular simulation and regular solution theory modeling of pure and mixed gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium Bis (trifluoromethylsulfonyl) amide ([hmim][Tf2N]). J Phys Chem B 112:16710–16720

    Article  CAS  PubMed  Google Scholar 

  49. Ramdin M, Chen Q, Balaji SP, Vicent-Luna JM, Torres-Knoop A, Dubbeldam D, Calero S, de Loos TW, Vlugt TJH (2014) Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. J Comput Sci 15:74–80

    Article  Google Scholar 

  50. Zhang X, Huo F, Liu Z, Wang W, Shi W, Maginn E (2009) Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium Tris (pentafluoroethyl) trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations. J Phys Chem B 113(21):7591–7598

    Article  CAS  PubMed  Google Scholar 

  51. Singh R, Marin-Rimoldi E, Maginn EJ (2015) A Monte Carlo simulation study to predict the solubility of carbon dioxide, hydrogen, and their mixture in the ionic liquids 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C nmim +][Tf 2N −], n= 4, 6). Ind Eng Chem Res 54(16):4385–4395

    Article  CAS  Google Scholar 

  52. Budhathoki S, Shah JK, Maginn EJ (2015) Molecular simulation study of the solubility, diffusivity and perms-electivity of pure and binary mixtures of CO2 and CH4 in the ionic liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Ind Eng Chem Res 54:8821–8828

    Article  CAS  Google Scholar 

  53. Shi W, Maginn EJ (2009) Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]). AICHE J 55(9):2414–2421

    Article  CAS  Google Scholar 

  54. Becker TM, Wang M, Kabra A, Jamali SH, Ramdin M, Dubbeldam D, Infante Ferreira CA, Vlugt TJH (2018) Absorption refrigeration cycles with ammonia-ionic liquid working pairs studied by molecular simulation. Ind Eng Chem Res 57(15):5442–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marin-Rimoldi E, Shah JK, Maginn EJ (2016) Monte Carlo simulations of water solubility in ionic liquids: a force field assessment Fluid Phase Equilib 407:117–125

    Google Scholar 

  56. Shi W, Damodaran K, Nulwala HB, Luebke DR (2012) Theoretical and experimental studies of water interaction in acetate based ionic liquids. Phys Chem Chem Phys 14:15897–15908

    Google Scholar 

  57. Kapoor U, Shah JK (2019) Monte Carlo simulations of pure and mixed gas solubilities of CO2 and CH4 in nonideal ionic liquid-ionic liquid mixtures. Ind Eng Chem Res 58:22569:22578

    Google Scholar 

  58. Kapoor, U and Shah JK (2018) Molecular origins of the apparent ideal CO2 solubilities in binary ionic liquid mixtures. J Phys Chem B 122:9763–9774

    Google Scholar 

  59. Abedini A, Crabtree E, Bara JE, Turner CH (2017) Molecular simulation of ionic polyimides and composites with ionic liquids as gas-separation membranes. Langmuir 33:11377–11389

    Google Scholar 

  60. Abedini A, Crabtree E, Bara JE, Turner CH (2018) Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes. Chemical Physics 516:71–83

    Google Scholar 

  61. Rai N, Maginn EJ (2011) Vapor-liquid coexistence and critical behavior of ionic liquids via molecular simulations. J Phys Chem Lett 2:1439–1443

    Google Scholar 

  62. Rai N, Maginn EJ (2011) Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations. Faraday discussions 154:53–69

    Google Scholar 

  63. Rane KS, Errington JR (2013) Using Monte Carlo simulation to compute liquid–vapor saturation properties of ionic liquids. J Phys Chem B 117:8018–8030

    Google Scholar 

  64. Rocha MAA, Lima CFRAC, Gomes LR, Schorder B, Coutinho JAP, Marrucho IM, Esperanca JMSS, Rebelo LPN, Shimizu K, Canongia Lopes JN, Santos LMNBF (2011) High-accuracy vapor pressure data of the extended [CnC1mim][Ntf2] ionic liquid series: Trend changes and structural shifts. J Phys Chem B 115:10919–10926

    Google Scholar 

  65. Rane KS, Errington JR (2014) Saturation properties of 1-alkyl-3-methylimidazolium based ionic liquids. J Phys Chem B 118:8734–8743

    Google Scholar 

  66. Budhathoki S, Shah JK, Maginn EJ (2017) Molecular simulation study of the performance of supported ionic liquid phase materials for the separation of carbon dioxide from methane and hydrogen. Industrial & Engineering Chemistry Research 56:6775–6784

    Google Scholar 

  67. Shi W, Luebke DR (2013) Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][tf2n]) confined in silica slit pores: A molecular simulation study. Langmuir 29:5563–5572

    Google Scholar 

  68. Fujie K, Yamada T, Ikeda R, Kitagawa H (2014) Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior. Angewandte Chemie International Edition 53:11302–11305

    Google Scholar 

  69. Mohamed A, Krokidas P, Economou IG (2018) CO2 selective metal organic framework ZIF-8 modified through ionic liquid encapsulation: A computational study. J Comput Sci 27:183–191

    Google Scholar 

  70. Vicent-Luna JM, Gutiérrez-Sevillano JJ, Anta JA, Calero S (2013) Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal–organic framework. J Phys Chem C 117:20762–20768

    Google Scholar 

  71. Chen Y, Hu Z, Gupta KM, Jiang J (2011) Ionic liquid/metal–organic framework composite for CO2 capture: A computational investigation. J Phys Chem C 115:21736–21742

    Google Scholar 

  72. Gupta KM, Chen Y, Hu Z, Jiang J (2012) Metal–organic framework supported ionic liquid membranes for CO2 capture: Anion effects. Physical Chemistry Chemical Physics 14:5785–5794

    Google Scholar 

  73. Gupta, KM, Chen Y, Jiang J (2013) Ionic liquid membranes supported by hydrophobic and hydrophilic metal–organic frameworks for CO2 capture. J Phys Chem C 117:5792–5799

    Google Scholar 

  74. Vicent-Luna JM, Gutiérrez-Sevillano JJ, Hamad S, Anta J, Calero S (2018) Role of ionic liquid [EMIM]+[SCN] in the adsorption and diffusion of gases in metal–organic frameworks ACS Applied Materials & Interfaces 10:29694–29704

    Google Scholar 

  75. Xue W, Li Z, Huang H, Yang Q, Liu D, Xu Q, Zhong C (2016) Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study. Chem Eng Sci 140:1–9

    Google Scholar 

  76. Kinik FP, Altinta C, Balci V, Koyuturk B, Uzun A, Keskin S (2016) [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance ACS Applied Materials & Interfaces 8:30992–31005

    Google Scholar 

  77. Mullen RG, Corcelli SA, Maginn EJ (2018) Reaction ensemble monte carlo simulations of CO2 absorption in the reactive ionic liquid triethyl(octyl)phosphonium 2-cyanopyrrolide Journal of Physical Chemistry Letters 9:5213–5218

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) Award Number CBET-1706978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindal K. Shah .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dhakal, P., Shah, J.K. (2022). Advances in Monte Carlo Simulation of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics