Skip to main content

Ionic Liquids (ILs) with Reduced Hazard and Risk, How to Design, and Future Challenges

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 172 Accesses

Introduction

In recent years ionic liquids (ILs) have attracted great interest, which has led to a vast number of >100,000 publications, including >15,000 patents (according to CAS Finders search; search term “ionic liquids”; September 2019). In 2018 alone, an average of more than 150 IL publications, including some 5 review papers and more than 35 patents, were published weekly. The rising interest in ILs is due mainly to the unique physicochemical properties of certain ILs, for example, low vapor pressure, their high electrochemical and thermal stability, wide range of viscosity and favorable solvation properties, which make them interesting in different fields of research and application. Concurrently with the rapidly expanding knowledge about ILs, more and more data on their biodegradability and (eco)toxicology is becoming available, for instance, summarized in [1,2,3], and several hundred papers have recently been published on this aspect for various compounds.

Much has been...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Stolte S, Steudte S, Igartua A, Stepnowski P (2011) The Biodegradation of Ionic Liquids – the View from a Chemical Structure Perspective. Curr Org Chem 15:1946–1973

    Article  CAS  Google Scholar 

  2. Jordan A, Gathergood N (2015) Biodegradation of ionic liquids – a critical review. Chem Soc Rev 44:8200–8237

    Article  CAS  PubMed  Google Scholar 

  3. Costa S, Azevedo A, Pinto P, Saraiva M (2017) Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 10:2321–2347

    Article  CAS  PubMed  Google Scholar 

  4. Steudte S, Neumann J, Bottin-Weber U, Diedenhofen M, Arning J, Stepnowski P, Stolte S (2012) Hydrolysis study of fluoroorganic and cyano-based ionic liquid anions – consequences for operational safety and environmental stability. Green Chem 14:2474–2483

    Article  CAS  Google Scholar 

  5. Siedlecka E, Czerwicka M, Stolte S, Stepnowski P (2011) Stability of Ionic Liquids in Application Conditions. Curr Org Chem 15:1974–1991

    Article  CAS  Google Scholar 

  6. Calza P, Noè G, Fabbri D, Santoro V, Minero C, Vione D, Medana C (2017) Photoinduced transformation of pyridinium-based ionic liquids, and implications for their photochemical behavior in surface waters. Water Res 122:194–206

    Article  CAS  PubMed  Google Scholar 

  7. Pavan M, Netzeva T, Worth A (2008) Review of Literature-Based Quantitative Structure-Activity Relationship Models for Bioconcentration. QSAR Comb Sci 27:21–31

    Article  CAS  Google Scholar 

  8. Dołżonek J, Cho C-W, Stepnowski P, Markiewicz M, Thöming J, Stolte S (2017) Membrane partitioning of ionic liquid cations, anions and ion pairs – Estimating the bioconcentration potential of organic ions. Environ Pollut 228:378–389

    Article  PubMed  CAS  Google Scholar 

  9. Ranke J, Cox M, Müller A, Schmidt C, Beyersmann D (2006) Sorption, cellular distribution, and cytotoxicity of imidazolium ionic liquids in mammalian cells – influence of lipophilicity. Toxicol Environ Chem 88:273–285

    Article  CAS  Google Scholar 

  10. Nędzi ALM, Nichthauser J, Stepnowski P (2013) Bioaccumulation of 1-butyl-3-methylimidazolium chloride ionic liquid in a simple marine trophic chain. Oceanol Hydrobiol Stud 42:149–154

    Article  CAS  Google Scholar 

  11. Syguda A, Gielnik A, Borkowski A, Woźniak-Karczewska M, Parus A, Piechalak A, Olejnik A, Marecik R, Ławniczak Ł, Chrzanowski Ł (2018) Esterquat herbicidal ionic liquids (HILs) with two different herbicides: evaluation of activity and phytotoxicity. New J Chem 42(12):9819–9827

    Article  CAS  Google Scholar 

  12. Zhao D, Liao Y, Zhang Z (2007) Toxicity of Ionic Liquids. Clean 35(1):42–48

    Google Scholar 

  13. Pham TT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: A review. Water Res 44:352–372

    Article  CAS  PubMed  Google Scholar 

  14. Ananikov K, Egorova V (2014) Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Task-Specific Optimization. ChemSusChem 7:336–360

    Article  PubMed  CAS  Google Scholar 

  15. Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of Sustainable Chemical Products – The Example of Ionic Liquids. Chem Rev 107:2183–2206

    Article  CAS  PubMed  Google Scholar 

  16. Monti D, Egiziano E, Burgalassi S, Chetoni P, Chiappe C, Sanzone A, Tampucci S (2017) Ionic liquids as potential enhancers for transdermal drug delivery. Int J Pharm 516(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  17. Ranke J, Müller A, Bottin-Weber U, Stock F, Stolte S, Arning J, Störmann R, Jastorff B (2007) Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicol Environ Saf 67:430–438

    Article  CAS  PubMed  Google Scholar 

  18. Ventura S, Marques C, Rosatella A, Afonso C, Gonçalves F, Coutinho J (2012) Toxicity assessment of various ionic liquid families towards Vibrio fischeri marine bacteria. Ecotoxicol Environ Saf 76:162–168

    Article  CAS  PubMed  Google Scholar 

  19. Cho C-W, Jeon Y-C, Pham TT, Vijayaraghavan K, Yun Y-S (2008) The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171

    Article  CAS  PubMed  Google Scholar 

  20. Bernot R, Kennedy E, Lamberti G (2005) Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta. Environ Toxicol Chem 24(7):1759–1765

    Article  CAS  PubMed  Google Scholar 

  21. Stolte S, Matzke M, Arning J, Böschen A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  22. Kumar R, Papaiconomou N, Lee J-M, Salminen J, Clark D, Prausnitz J (2009) In Vitro Cytotoxicities of Ionic Liquids: Effect of Cation Rings, Functional Groups, and Anions. Environ Toxicol 24(4):388–395

    Article  CAS  PubMed  Google Scholar 

  23. Couling D, Bernot R, Docherty K, Dixon J, Maginn E (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem 8:82–90

    Article  CAS  Google Scholar 

  24. Docherty K Jr, Kulpa C (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    Article  CAS  Google Scholar 

  25. Eisenträger A, Brinkmann C, Hollert H, Sagner A, Tiehm A, Neuwöhner J (2008) Heterocyclic compounds: toxic effects using algae, daphnids, and the Salmonella/Microsome test taking methodical quantitative aspects into account. Environ Toxicol Chem 27(7):1590–1596

    Article  Google Scholar 

  26. Maillard J-Y (2005) Antimicrobial biocides in the healthcare environment: efficacy, usage, policies, and perceived problems. Ther Clin Risk Manag 1(4):307–320

    PubMed  PubMed Central  Google Scholar 

  27. Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S (2014) Toxicity and biodegradability of dicationic ionic liquids. RSC Adv 4:5198–5205

    Article  CAS  Google Scholar 

  28. Silva FE, Siopa F, Figueiredo B, Gonçalves A, Pereira J, Gonçalves F, Coutinho J, Afonso C, Ventura S (2014) Sustainable design for environment-friendly mono and dicationic cholinium-based ionic liquids. Ecotoxicol Environ Saf 108:302–310

    Article  CAS  Google Scholar 

  29. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404

    Article  CAS  PubMed  Google Scholar 

  30. Łuczak J, Jungnickel C, Łącka I, Stolte S, Hupka J (2010) Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem 12:593–601

    Article  CAS  Google Scholar 

  31. Russell AD, McDonnell G (1999) Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev 12(1):147–179

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5:52–56

    Article  CAS  Google Scholar 

  33. Birnie C, Malamud D, Schnaare R (2000) Antimicrobial Evaluation of N-Alkyl Betaines and N-Alkyl-N,N-Dimethylamine Oxides with Variations in Chain Length. Antimicrob Agents Chemother 44(9):2514–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reichenberg P, Mayer F (2006) Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environ Toxicol Chem 25(10):2639–2644

    Article  PubMed  Google Scholar 

  35. Ventura S, Gonçalves A, Pereira J, Gonçalves F, Coutinho J (2012) Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology 22(1):1–12

    Article  PubMed  CAS  Google Scholar 

  36. Izadiyan M, Fatemi P (2011) Cytotoxicity estimation of ionic liquids based on their effective structural features. Chemosphere 84:553–563

    Article  PubMed  CAS  Google Scholar 

  37. Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, Ürdingen M, Welz-Biermann U, Jastorff B, Ranke J (2006) Anion effects on the cytotoxicity of ionic liquids. Green Chem 8:621–629

    Article  CAS  Google Scholar 

  38. Sintra T, Nasirpour M, Siopa F, Rosatella A, Gonçalves F, Coutinho J, Afonso C, Ventura S (2017) Ecotoxicological evaluation of magnetic ionic liquids. Ecotoxicol Environ Saf 143:315–321

    Article  CAS  PubMed  Google Scholar 

  39. Petkovic M, Ferguson J, Gunaratne H, Ferreira R, Leitão M, Seddon K, Rebelo L, Pereira CS (2010) Novel biocompatible cholinium-based ionic liquids – toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  40. Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207

    Article  CAS  Google Scholar 

  41. Zhang J, Liu S-S, Dou R-N, Liu H-L, Zhang J (2011) Evaluation on the toxicity of ionic liquid mixture with antagonism and synergism to Vibrio qinghaiensis sp.-Q67. Chemosphere 82:1024–1029

    Article  CAS  PubMed  Google Scholar 

  42. Xu Y-Q, Liu S-S, Fan Y, Li K (2018) Toxicological interaction of multi-component mixtures to Vibrio qinghaiensis sp.-Q67 induced by at least three components. Sci Total Environ 635:432–442

    Article  CAS  PubMed  Google Scholar 

  43. Feng L, Liu S-S, Li K, Tang H-X, Liu H-L (2017) The time-dependent synergism of the six-component mixtures of substituted phenols, pesticides and ionic liquids to Caenorhabditis elegans. J Hazard Mater 327:11–17

    Article  CAS  PubMed  Google Scholar 

  44. Jing B, Lan N, Qiu J, Zhu Y (2016) Interaction of Ionic Liquids with a Lipid Bilayer: A Biophysical Study of Ionic Liquid Cytotoxicity. J Phys Chem B 120(10):2781–2789

    Article  CAS  PubMed  Google Scholar 

  45. Gal N, Malferrari D, Kolusheva S, Galletti P, Tagliavini E, Jelinek R (2012) Membrane interactions of ionic liquids: Possible determinants for biological activity and toxicity. Biochim. Biophys. Acta, Biomembr 1818(12):2967–2974

    Article  CAS  Google Scholar 

  46. Mester P, Robben C, Witte A, Kalb R, Ehling-Schulz M, Rossmanith P, Grunert T (2019) FTIR Spectroscopy Suggests a Revised Mode of Action for the Cationic Side-Chain Effect of Ionic Liquids. ACS Comb Sci 21:90–97

    Article  CAS  PubMed  Google Scholar 

  47. Liu D, Liu H, Wang S, Chen J, Xia Y (2018) The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus: Growth inhibition, phototoxicity, and oxidative stress. Sci Total Environ 622–623:1572–1580

    Article  PubMed  CAS  Google Scholar 

  48. Guo Y, Liu T, Zhang J, Wang J, Wang J, Zhu L, Yang J (2016) Biochemical and genetic toxicity of the ionic liquid 1-octyl-3-methylimidazolium chloride on earthworms (Eisenia fetida). Environ Toxicol Chem 35(2):411–418

    Article  CAS  PubMed  Google Scholar 

  49. Liu P, Ding Y, Liu H, Sun L, Li X, Wang J (2010) Toxic effects of 1-methyl-3-octylimidazolium bromide on the wheat seedlings. J Environ Sci 22(12):1974–1979

    Article  CAS  Google Scholar 

  50. Ma J, Li X, Cui M, Li W, Li X (2018) Negative impact of the imidazolium-based ionic liquid [C8mim]Br on silver carp (Hypophthalmichthys molitrix): Long-term and low-level exposure. Chemosphere 213:358–367

    Article  CAS  PubMed  Google Scholar 

  51. Ding Y, Zhang L, Xie J, Guo R (2010) Binding Characteristics and Molecular Mechanism of Interaction between Ionic Liquid and DNA. J Phys Chem B 114(5):2033–2043

    Article  CAS  PubMed  Google Scholar 

  52. Perez C, Tata A, Campos MD, Peng C, Ifa D (2016) Monitoring Toxic Ionic Liquids in Zebrafish (Danio rerio) with Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI). J. Am. Soc. Mass Spectrometry 28(6):1136–1148

    Article  CAS  Google Scholar 

  53. Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase – a structure-activity relationship consideration. Green Chem 6:286–290

    Article  CAS  Google Scholar 

  54. Pandey A, Ekka M, Ranjan S, Maiti S, Sachidanandan C (2017) Teratogenic, cardiotoxic and hepatotoxic properties of related ionic liquids reveal the biological importance of anionic components. RSC Adv 7:22927–22,935

    Article  CAS  Google Scholar 

  55. Cheng Y, Wright S, Hooth M, Sipes I (2009) Characterization of the disposition and toxicokinetics of N-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2. Drug Metab Dispos 37:909–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Köpsell H, Lips K, Volk C (2007) Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications. Pharm Res 24(7):1227–1251

    Article  CAS  Google Scholar 

  57. Wright S, Martínez-Guerrero L (2013) Substrate-Dependent Inhibition of Human MATE1 by Cationic Ionic Liquids. J Pharmacol Exp Ther 346:495–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cheng Y, Martínez-Guerrero L, Wright S, Küster R, Hooth M, Sipes I (2011) Characterization of the Inhibitory Effects of N-Butylpyridinium Chloride and Structurally Related Ionic Liquids on Organic Cation Transporters 1/2 and Human Toxic Extrusion Transporters 1/2-K In Vitro and In Vivo. Drug Metab Dispos 39(9):1755–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neumann J, Steudte S, Cho C-W, Thöming J, Stolte S (2014) Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem 4:2174–2184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stolte .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beil, S., Stolte, S. (2020). Ionic Liquids (ILs) with Reduced Hazard and Risk, How to Design, and Future Challenges. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics