Skip to main content

All-Atom Models of Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 85 Accesses

All-Atom Force Fields: in medio stat virtus

Molecular simulation has contributed enormously to our understanding of ionic liquids. This is a recent class of organic salts that are liquid and stable near room temperature, for which no previous extensive body of experimental data on physical and chemical properties was available. Therefore, simulation has provided not only molecular-level interpretation of new experimental information, but has contributed with predictions and with discoveries made in silico, later verified by experiments [1,2,3]. Molecular dynamics (MD) is more generally applicable to a variety of systems and problems than Monte Carlo simulation, so MD has been employed in most computational studies of ionic liquids. Molecular simulations can be carried out using interaction forces calculated essentially at three different levels of description of the molecules or materials under study.

At the electronic structure level, density functional theory (DFT) is used to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sheridan QR, Schneider WF, Maginn EJ (2018) Role of molecular modeling in the development of CO2-reactive ionic liquids. Chem Rev 118:5242–5260. https://doi.org/10.1021/acs.chemrev.8b00017

    Article  CAS  PubMed  Google Scholar 

  2. Canongia Lopes JNA, Pádua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335. https://doi.org/10.1021/jp056006y

    Article  CAS  PubMed  Google Scholar 

  3. Triolo A, Russina O, Bleif H-J, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids †. J Phys Chem B 111:4641–4644. https://doi.org/10.1021/jp067705t

    Article  CAS  PubMed  Google Scholar 

  4. Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn. Academic, San Diego

    Google Scholar 

  5. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

    Book  Google Scholar 

  6. J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures., Butterworth Scientific, 1982

    Google Scholar 

  7. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  8. Hanke CG, Price SL, Lynden-Bell RM (2001) Intermolecular potentials for simulations of liquid imidazolium salts. Mol Phys 99:801–809. https://doi.org/10.1080/00268970010018981

    Article  CAS  Google Scholar 

  9. Canongia Lopes JN, Deschamps J, Pádua AAH (2004) Modeling ionic liquids using a systematic all-atom force field. J Phys Chem B 108:11250–11250. https://doi.org/10.1021/jp0476996

    Article  CAS  Google Scholar 

  10. Canongia Lopes JN, Pádua AAH (2012) CL&P: a generic and systematic force field for ionic liquids modeling. Theor Chem Accounts 131:1129. https://doi.org/10.1007/s00214-012-1129-7

    Article  CAS  Google Scholar 

  11. Sambasivarao SV, Acevedo O (2009) Development of OPLS-AA force field parameters for 68 unique ionic liquids. J Chem Theory Comput 5:1038–1050. https://doi.org/10.1021/ct900009a

    Article  CAS  PubMed  Google Scholar 

  12. Maginn EJ (2007) Atomistic simulation of the thermodynamic and transport properties of ionic liquids. Acc Chem Res 40:1200–1207. https://doi.org/10.1021/ar700163c

    Article  CAS  PubMed  Google Scholar 

  13. Urahata SM, Ribeiro MCC (2004) Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: a systematic computer simulation study. J Chem Phys 120:1855–1863. https://doi.org/10.1063/1.1635356

    Article  CAS  PubMed  Google Scholar 

  14. Urahata SM, Ribeiro MCC (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511. https://doi.org/10.1063/1.1826035

    Article  CAS  PubMed  Google Scholar 

  15. Hu Z, Margulis CJ (2006) Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc Natl Acad Sci 103:831–836. https://doi.org/10.1073/pnas.0507364103

    Article  CAS  PubMed  Google Scholar 

  16. Kelkar MS, Maginn EJ (2007) Calculating the enthalpy of vaporization for ionic liquid clusters. J Phys Chem B 111:9424–9427. https://doi.org/10.1021/jp073253o

    Article  CAS  PubMed  Google Scholar 

  17. Bhargava BL, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127:114510. https://doi.org/10.1063/1.2772268

    Article  CAS  PubMed  Google Scholar 

  18. Schröder C (2012) Comparing reduced partial charge models with polarizable simulations of ionic liquids. Phys Chem Chem Phys 14:3089–3102. https://doi.org/10.1039/c2cp23329k

    Article  CAS  PubMed  Google Scholar 

  19. Borodin O, Smith GD (2006) Development of Many−Body polarizable force fields for Li-Battery components: 1. Ether, alkane, and carbonate-based solvents. J Phys Chem B 110:6279–6292. https://doi.org/10.1021/jp055079e

    Article  CAS  PubMed  Google Scholar 

  20. Borodin O (2009) Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B 113:11463–11478. https://doi.org/10.1021/jp905220k

    Article  CAS  PubMed  Google Scholar 

  21. Cavalcante OA, Ribeiro MCC, Skaf MS (2014) Polarizability effects on the structure and dynamics of ionic liquids. J Chem Phys 140:144108. https://doi.org/10.1063/1.4869143

    Article  CAS  Google Scholar 

  22. Schröder C, Steinhauser O (2010) Simulating polarizable molecular ionic liquids with Drude oscillators. J Chem Phys 133:154511. https://doi.org/10.1063/1.3493689

    Article  CAS  PubMed  Google Scholar 

  23. Lamoureux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025–3039. https://doi.org/10.1063/1.1589749

    Article  CAS  Google Scholar 

  24. Lemkul JA, Huang J, Roux B, MacKerell AD (2016) An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem Rev 116:4983–5013. https://doi.org/10.1021/acs.chemrev.5b00505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heid E, Szabadi A, Schröder C (2018) Quantum mechanical determination of atomic polarizabilities of ionic liquids. Phys Chem Chem Phys 20:10992–10996. https://doi.org/10.1039/C8CP01677A

    Article  CAS  PubMed  Google Scholar 

  26. Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD (2014) Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J Chem Phys 140:094106. https://doi.org/10.1063/1.4867135

    Article  CAS  PubMed  Google Scholar 

  27. McDaniel JG, Choi E, Son CY, Schmidt JR, Yethiraj A (2016) Ab initio force fields for imidazolium-based ionic liquids. J Phys Chem B 120:7024–7036. https://doi.org/10.1021/acs.jpcb.6b05328

    Article  CAS  PubMed  Google Scholar 

  28. Pádua AAH (2017) Resolving dispersion and induction components for Polarisable molecular simulations of ionic liquids. J Chem Phys 146:204501. https://doi.org/10.1063/1.4983687

    Article  CAS  PubMed  Google Scholar 

  29. Goloviznina K, Canongia Lopes JN, Costa Gomes M, Pádua AAH (2019) Transferable, polarizable force field for ionic liquids. J Chem Theory Comput 15:5858–5871. https://doi.org/10.1021/acs.jctc.9b00689

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agílio A. H. Pádua .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pádua, A.A.H. (2021). All-Atom Models of Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics