Skip to main content

Chemical Reactions in Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 27 Accesses

Introduction

Solvents are widely used in chemistry and chemical engineering processes. In recent years, increasing global concerns over environmental pollution and the use of large amount of volatile molecular solvents in chemical industry have inspired scientists and engineers to explore more environmentally benign and greener solvents. In this context, ionic liquids have been widely recognized as promising alternatives to conventional volatile liquid solvents in various chemical reactions, as well as extraction and separation procedures [1]. This is primarily attributed to many unique physiochemical properties associated with ionic liquids, such as nonflammability, high chemical and thermal stability, negligible vapor pressure, high polarity and relatively high electroconductivity, wide electrochemical window, remarkable solvent power for a wide range of organic and inorganic matter and good catalytic activity, etc. Moreover, the physiochemical properties of ionic liquids could be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Clarke CJ, Tu W-C, Levers O, Bröhl A, Hallett JP et al (2018) Green and sustainable solvents in chemical processes. Chem Rev 118(2):747–800

    Article  CAS  Google Scholar 

  2. Qiao Y, Ma W, Theyssen N, Chen C, Hou Z (2017) Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications. Chem Rev 117(10):6881–6928

    Article  CAS  Google Scholar 

  3. Verma C, Ebenso EE, Quraishi MA (2019) Transition metal nanoparticles in ionic liquids: synthesis and stabilization. J Mol Liq 276:826–849

    Article  CAS  Google Scholar 

  4. Xu B, Lumb J-P, Arndtsen BA (2015) A TEMPO-free copper-catalyzed aerobic oxidation of alcohols. Angew Chem Int Ed 54(14):4208–4211

    Article  CAS  Google Scholar 

  5. Dai C, Zhang J, Huang C, Lei Z (2017) Ionic liquids in selective oxidation: catalysts and solvents. Chem Rev 117(10):6929–6983

    Article  CAS  Google Scholar 

  6. Delorme AE, Sans V, Licence P, Walsh DA (2019) Tuning the reactivity of TEMPO during electrocatalytic alcohol oxidations in room-temperature ionic liquids. ACS Sustain Chem Eng 7(13):11691–11699

    Article  CAS  Google Scholar 

  7. Liu L, Li Y, Wei H, Dong M, Wang J, Slawin AMZ, Li J, Dong J, Morris RE (2009) Ionothermal synthesis of zirconium phosphates and their catalytic behavior in the selective oxidation of cyclohexane. Angew Chem Int Ed 48(12):2206–2209

    Article  CAS  Google Scholar 

  8. Chen L, Zhou T, Chen L, Ye Y, Qi Z, Freund H, Sundmacher K (2011) Selective oxidation of cyclohexanol to cyclohexanone in the ionic liquid 1-octyl-3-methylimidazolium chloride. Chem Commun 47(33):9354–9356

    Article  CAS  Google Scholar 

  9. Hazra S, Ribeiro APC, Guedes da Silva MFC, Nieto de Castro CA, Pombeiro AJL (2016) Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Trans 45(35):13957–13968

    Article  CAS  Google Scholar 

  10. Jiang N, Ragauskas AJ (2005) Copper (II)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy] PF6. Org Lett 7(17):3689–3692

    Article  CAS  Google Scholar 

  11. Miao C-X, Wang J-Q, Yu B, Cheng W-G, Sun J, Chanfreau S, He L-N, Zhang S-J (2011) Synthesis of bimagnetic ionic liquid and application for selective aerobic oxidation of aromatic alcohols under mild conditions. Chem Commun 47(9):2697–2699

    Article  CAS  Google Scholar 

  12. Karthikeyan P, Arunrao AS, Narayan MP, Kumar SS, Kumar SS, Bhagat PR (2012) Selective oxidation of alcohol to carbonyl compound catalyzed by l-aspartic acid coupled imidazolium based ionic liquid. J Mol Liq 173:180–183

    Article  CAS  Google Scholar 

  13. Liu M, Zhang Z, Liu H, Xie Z, Mei Q, Han B (2018) Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. Sci Adv 4(10):eaas9319

    Article  CAS  Google Scholar 

  14. Chen R, Xin J, Yan D, Dong H, Lu X, Zhang S (2019) Highly efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid with heteropoly acids and ionic liquids. ChemSusChem 12(12):2715–2724

    Article  CAS  Google Scholar 

  15. Al-Degs YS, El-Sheikh AH, Al Bakain RZ, Newman AP, Al-Ghouti MA (2016) Conventional and upcoming sulfur-cleaning technologies for petroleum fuel: a review. Energ Technol 4(6):679–699

    Article  Google Scholar 

  16. Ibrahim MH, Hayyan M, Hashim MA, Hayyan A (2017) The role of ionic liquids in desulfurization of fuels: a review. Renew Sust Energ Rev 76:1534–1549

    Article  CAS  Google Scholar 

  17. Fang D, Wang Q, Liu Y, Xia L, Zang S (2014) High-efficient oxidation–extraction desulfurization process by ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid. Energy Fuel 28(10):6677–6682

    Article  CAS  Google Scholar 

  18. Hao L, Sun L, Su T, Hao D, Liao W, Deng C, Ren W, Zhang Y, Lü H (2019) Polyoxometalate-based ionic liquid catalyst with unprecedented activity and selectivity for oxidative desulfurization of diesel in [Omim]BF4. Chem Eng J 358:419–426

    Article  CAS  Google Scholar 

  19. Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, Yang H (2018) Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process Technol 177:81–88

    Article  CAS  Google Scholar 

  20. He M, Sun Y, Han B (2013) Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew Chem Int Edit 52(37):9620–9633

    Article  CAS  Google Scholar 

  21. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Edit 55(26):7296–7343

    Article  CAS  Google Scholar 

  22. Chen F-F, Huang K, Zhou Y, Tian Z-Q, Zhu X, Tao D-J, Jiang D-e, Dai S (2016) Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids. Angew Chem Int Edit 55(25):7166–7170

    Article  CAS  Google Scholar 

  23. Melo CI, Szczepańska A, Bogel-Łukasik E, Nunes da Ponte M, Branco LC (2016) Hydrogenation of carbon dioxide to methane by ruthenium nanoparticles in ionic liquid. ChemSusChem 9(10):1081–1084

    Article  CAS  Google Scholar 

  24. Melo CI, Rente D, Nunes da Ponte M, Bogel-Łukasik E, Branco LC (2019) Carbon dioxide to methane using ruthenium nanoparticles: effect of the ionic liquid media. ACS Sustain Chem Eng 7(14):11963–11969

    CAS  Google Scholar 

  25. Weilhard A, Qadir MI, Sans V, Dupont J (2018) Selective CO2 hydrogenation to formic acid with multifunctional ionic liquids. ACS Catal 8(3):1628–1634

    Article  CAS  Google Scholar 

  26. Asare Bediako BB, Qian Q, Zhang J, Wang Y, Shen X, Shi J, Cui M, Yang G, Wang Z, Tong S, Han B (2019) Ru-catalyzed methanol homologation with CO2 and H2 in an ionic liquid. Green Chem 21(15):4152–4158

    Article  CAS  Google Scholar 

  27. Alvarez-Guerra M, Albo J, Alvarez-Guerra E, Irabien A (2015) Ionic liquids in the electrochemical valorisation of CO2. Energy Environ Sci 8(9):2574–2599

    Article  CAS  Google Scholar 

  28. Lu W, Jia B, Cui B, Zhang Y, Yao K, Zhao Y, Wang J (2017) Efficient photoelectrochemical reduction of carbon dioxide to formic acid: a functionalized ionic liquid as an absorbent and electrolyte. Angew Chem Int Edit 56(39):11851–11854

    Article  CAS  Google Scholar 

  29. Sun X, Lu L, Zhu Q, Wu C, Yang D, Chen C, Han B (2018) MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Edit 57(9):2427–2431

    Article  CAS  Google Scholar 

  30. Zhu Q, Ma J, Kang X, Sun X, Liu H, Hu J, Liu Z, Han B (2016) Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew Chem Int Edit 55(31):9012–9016

    Article  CAS  Google Scholar 

  31. Cui X, Surkus A-E, Junge K, Topf C, Radnik J, Kreyenschulte C, Beller M (2016) Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nat Commun 7:11326

    Article  Google Scholar 

  32. Karakulina A, Gopakumar A, Akçok İ, Roulier BL, LaGrange T, Katsyuba SA, Das S, Dyson PJ (2016) A rhodium nanoparticle–Lewis acidic ionic liquid catalyst for the chemoselective reduction of heteroarenes. Angew Chem Int Edit 55(1):292–296

    Article  CAS  Google Scholar 

  33. Konnerth H, Prechtl MHG (2017) Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. Green Chem 19(12):2762–2767

    Article  CAS  Google Scholar 

  34. Chen L, Xin J, Ni L, Dong H, Yan D, Lu X, Zhang S (2016) Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chem 18(8):2341–2352

    Article  CAS  Google Scholar 

  35. Yang S, Lu X, Yao H, Xin J, Xu J, Kang Y, Yang Y, Cai G, Zhang S (2019) Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF6-Ru/SBA-15 catalysis under acid free conditions. Green Chem 21(3):597–605

    Article  CAS  Google Scholar 

  36. Chen L, Fink C, Fei Z, Dyson PJ, Laurenczy G (2017) An efficient Pt nanoparticle–ionic liquid system for the hydrodeoxygenation of bio-derived phenols under mild conditions. Green Chem 19(22):5435–5441

    Article  CAS  Google Scholar 

  37. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed 55(29):8164–8215

    Article  CAS  Google Scholar 

  38. Zhang Z, Song J, Han B (2017) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117(10):6834–6880

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buxing Han .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Z., Han, B. (2022). Chemical Reactions in Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics