Skip to main content

Catalysis of Supported Ionic Liquids

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 232 Accesses

Definition

Reactions catalyzed by materials that are composed of thin films of ionic liquid on porous support surfaces. The catalytic functionality can be the ionic liquid itself, a dissolved homogeneous catalyst, or a heterogeneous support coated with ionic liquid.

Introduction

In an industrial environment, the separation of the product from the catalyst and the efficient recycling of the usually expensive catalyst are key factors for the economic success. While homogeneous transition metal complexes and biocatalysts are advantageous compared to heterogeneous catalysts with respect to reaction conditions and selectivity, the often tedious and energy-consuming separation of these homogeneous catalysts from the reaction mixture hampers the implementation of these benign systems in industry. Ionic liquid film coating of solid catalytic materials helps to overcome or minimize some of these drawbacks [1].

In homogeneous catalysis, the often tedious catalyst recycling and product separation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fehrmann R, Riisager A, Haumann M (eds) (2014) Supported ionic liquids – fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. (a) Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquid phase (silp) catalysis: an innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur J Inorg Chem 695–706; (b) Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquids: versatile reaction and separation media. Top Catal 40:91–102

    Google Scholar 

  3. Gu Y, Li G (2009) Ionic liquids-based catalysis with solids: state of the art. Adv Synth Catal 351:817–847

    Google Scholar 

  4. van Doorslaer C, Wahlen J, Mertens P, Binnemans K, de Vos D (2010) Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Trans 39:8377–8390

    Google Scholar 

  5. Virtanen P, Salminen E, Mäki-Arvela P, Mikkola J-P (2014) Selective hydrogenation for fine chemical synthesis. In: Fehrmann R, Riisager A, Haumann M (eds) Supported ionic liquids – fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  6. Korth W, Jess A (2014) Solid catalysts with ionic liquid layer (SCILL). In: Fehrmann R, Riisager A, Haumann M (eds) Supported ionic liquids – fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  7. Selvam T, Machoke A, Schwieger W (2012) Supported ionic liquids on non-porous and porous inorganic materials – A topical review. Appl Catal A Gen 445–446:92–101

    Google Scholar 

  8. Meijboom R, Haumann M, Müller TE, Szesni N (2014) Synthetic methodologies for supported ionic liquid materials. In: Fehrmann R, Riisager A, Haumann M (eds) Supported ionic liquids – fundamentals and applications. Wiley-VCH, Weinheim

    Google Scholar 

  9. Werner S, Szesni N, Kaiser M, Haumann M, Wasserscheid P (2012) A scalable preparation method for SILP and SCILL ionic liquid thin-film materials. Chem Eng Technol 35:1962–1967

    Google Scholar 

  10. (a) DeCastro C, Sauvage E, Valkenberg MH, Hölderich WF (2000) Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J Catal 196:86–94; (b) Valkenberg MH, DeCastro C, Hölderich WF (2001) Immobilisation of chloroaluminate ionic liquids on silica materials. Top Catal 14:139–144

    Google Scholar 

  11. (a) Joni J, Haumann M, Wasserscheid P (2009) Development of a supported ionic liquid phase (SILP) catalyst for slurry-phase friedel–crafts alkylations of cumene. Adv Synth Catal 351:423–431; (b) Joni J, Haumann M, Wasserscheid P (2010) Continuous gas-phase isopropylation of toluene and cumene using highly acidic Supported Ionic Liquid Phase (SILP) catalysts. Appl Catal A Chem 372:8–15

    Google Scholar 

  12. Marinkovic J, Riisager A, Franke R, Haumann M (2019) Fifteen years of supported ionic liquid phase-catalyzed hydroformylation: material and process developments. Ind Eng Chem Res 58:2409–2420. https://doi.org/10.1021/acs.iecr.8b04010

  13. Riisager A, Fehrmann R, Haumann M, Gorle BSK, Wasserscheid P (2005) Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene. Ind Eng Chem Res 44:9853–9859

    Google Scholar 

  14. (a) Haumann M, Joni J, Dentler K, Wasserscheid P (2007) Continuous gas-phase hydroformylation of 1-butene using supported ionic liquid phase (SILP) catalysts. Adv Synth Catal 349:425–431; (b) Haumann M, Jakuttis M, Werner S, Wasserscheid P (2009) Supported ionic liquid phase (SILP) catalyzed hydroformylation of 1-butene in a gradient-free loop reactor. J Catal 263:321–327

    Google Scholar 

  15. (a) Jakuttis M, Schönweiz A, Franke R, Wiese K-D, Haumann M, Wasserscheid P (2011) Rhodium–phosphite SILP catalysis for the highly selective hydroformylation of mixed C4 feedstocks. Angew Chem Int Ed 50:4492–4495; (b) Haumann M, Jakuttis M, Franke R, Schönweiz A, Wasserscheid P (2011) continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem 3:1822–1827

    Google Scholar 

  16. (a) Werner S, Szesni N, Fischer RW, Wasserscheid P (2009) Homogeneous ruthenium-based water–gas shift catalysts via supported ionic liquid phase (SILP) technology at low temperature and ambient pressure. Phys Chem Chem Phys 11:10817–10819; (b) Werner S, Szesni N, Kaiser M, Fischer RW, Haumann M, Wasserscheid P (2010) Ultra-Low-Temperature Water–Gas Shift Catalysis using Supported Ionic Liquid Phase (SILP) Materials. ChemCatChem 2:1399–1402

    Google Scholar 

  17. Riisager A, Jorgensen B, Wasserscheid P, Fehrmann R (2006) First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation. Chem Commun:994–996

    Google Scholar 

  18. (a) García-Suárez EJ, Khokarale SG, Van Buu ON, Fehrmann R, Riisager A (2014) Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media. Green Chem 16:161–166; (b) Khokarale SG, García-Suárez EJ, Fehrmann R, Riisager A (2017) Highly selective continuous gas-phase methoxycarbonylation of ethylene with supported ionic liquid phase (SILP) catalysts. ChemCatChem 9:1824–1829

    Google Scholar 

  19. Jimenez O, Müller TE, Sievers C, Spirkl A, Lercher JA (2006) Markownikoff and anti-markownikoff hydroamination with palladiumcatalysts immobilized in thin films of silica supported ionic liquids. Chem Commun 2974–2976

    Google Scholar 

  20. Schneider MJ, Lijewski M, Wölfel R, Haumann M, Wasserscheid P (2013) Continuous gas-phase hydroaminomethylation using supported ionic liquid phase catalysts. Angew Chem Int Ed 52:6996–6999

    Google Scholar 

  21. (a) Öchsner E, Schneider MJ, Meyer C, Haumann M, Wasserscheid P (2011) Challenging the scope of continuous, gas-phase reactions with supported ionic liquid phase (SILP) catalysts–asymmetric hydrogenation of methyl acetoacetate. Appl Catal A Gen 399:35–41; (b) Schneider MJ, Haumann M, Wasserscheid P (2013) Asymmetric hydrogenation of methyl pyruvate in the continuous gas phase using supported ionic liquid phase (SILP) catalysis. -J Mol Catal A Chem 376:103–110

    Google Scholar 

  22. (a) Hintermair U, Höfener T, Pullmann T, Francio G, Leitner W (2010) Continuous enantioselective hydrogenation with a molecular catalyst in supported ionic liquid phase under supercritical CO2 flow. ChemCatChem 2:150–154; (b) Hintermair U, Francio G, Leitner W (2013) A fully integrated continuous‐flow system for asymmetric catalysis: enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO2 as the mobile phase. Chem Eur J 19:4538–4547; (c) Hintermair U, Roosen C, Kaever M, Kronenberg H, Thelen R, Aey S, Leitner W, Greiner L (2011) A versatile lab to pilot scale continuous reaction system for supercritical fluid processing. Org Process Res Dev 15:1275–1280

    Google Scholar 

  23. Amara Z, Poliakoff M, Duque R, Geier D, Francio G, Gordon CM, Meadows RE, Woodward R, Leitner W (2016) Enabling the scale-up of a key asymmetric hydrogenation step in the synthesis of an API using continuous flow solid-supported catalysis. Org Process Res Dev 20:1321–1327

    Google Scholar 

  24. Scholz J, Loekman S, Szesni N, Hieringer W, Görling A, Haumann M, Wasserscheid P (2011) Ethene-induced temporary inhibition of grubbs metathesis catalysts. Adv Synth Catal 353:2701–2707

    Google Scholar 

  25. Zhao J, Yu Y, Xu X, Di S, Wang B, Xu H, Ni J, Guo LL, Pan Z, Li X (2017) Heterogeneous non-mercury catalysts for acetylene hydrochlorination: progress, challenges, and opportunities. Appl Catal B Environ 206:2412–2427

    Google Scholar 

  26. Kernchen U, Etzold B, Korth W, Jess A (2007) Solid catalyst with ionic liquid layer (SCILL) – a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem Eng Technol 30:985–994

    Google Scholar 

  27. Virtanen P, Mikkola J-P, Toukoniitty E, Karhu H, Kordas K, Eränen K, Wärnå J, Salmi T (2009) Supported ionic liquid catalysts – From batch to continuous operation in preparation of fine chemicals. Catal Today 147S:S144–S148

    Google Scholar 

  28. (a) Arras J, Steffan M, Shayeghi Y, Ruppert D, Claus P (2009) Green Chem 11:716; (b) Arras J, Paki E, Roth C, Radnik J, Lucas M, Claus P (2010) Regioselective catalytic hydrogenation of citral with ionic liquids as reaction modifiers. J Phys Chem C 114:716–723

    Google Scholar 

  29. Steinrück H-P, Libuda J, Wasserscheid P, Cremer T, Kolbeck C, Laurin M, Maier F, Sobota M, Schulz PS, Stark M (2011) How a supported metal is influenced by an ionic liquid: in-depth characterization of SCILL-type palladium catalysts and their hydrogen adsorption. Adv Mater 23:10520–10526

    Google Scholar 

  30. (a) Ruta M, Yuranov I, Dyson PJ, Laurenczy G, Kiwi-Minsker L (2007) Structured fiber supports for ionic liquid-phase catalysis used in gas-phase continuous hydrogenation. J Catal 247:269–276; (b) Ruta M, Laurenczy G, Dyson PJ, Kiwi-Minsker L (2008) Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions. J Phys Chem C 112:17814–17819

    Google Scholar 

  31. Herrmann T, Rößmann L, Lucas M, Claus P (2011) High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene. Chem Commun 47:12310–12312

    Google Scholar 

  32. Hou R, Lan X, Wang T (2015) Selective hydrogenation of acetylene on Pd/SiO2 in bulk liquid phase: a comparison with solid catalyst with ionic liquid layer (SCILL). Catal Today 251:47–52

    Google Scholar 

  33. Barth T, Korth W, Jess A (2017) Selectivity-enhancing effect of a SCILL catalyst in butadiene hydrogenation. Chem Eng Technol 40:395–404

    Google Scholar 

  34. Jalal A, Uzun A (2017) An exceptional selectivity for partial hydrogenation on a supported nickel catalyst coated with [BMIM][BF4]. J Catal 350:86–96

    Google Scholar 

  35. Millert SF, Friedrich HB, Holzapfel CW (2012) The effects of SCILL catalyst modification on the competitive hydrogenation of 1-Octyne and 1,7-Octadiene versus 1-Octene. ChemCatChem 4:1337–1344

    Google Scholar 

  36. Millert SF, Friedrich HB, Holzapfel CW, Dasireddy VDBC (2015) Effects of organic modifiers on a palladium catalyst in the competitive hydrogenation of 1-Octene versus octanal: an evaluation of solid catalysts with an ionic liquid layer. ChemCatChem 7:2628–2363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Haumann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haumann, M. (2020). Catalysis of Supported Ionic Liquids. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics