Skip to main content

Application of Ionic Liquid Solvents in the Food Industry

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids

Introduction

Food consumption increases proportionally with the human population, and the prospect is that by 2050, the world population will reach 9.1 billion [1]. Therefore, optimization of processes for food production as well as the utilization of by-products for supplements becomes necessary [2]. In the current food system, industrial processes transport an immense variety and amount of products, which have a huge impact on the Earth’s natural resources [3]. Thus, it is increasingly necessary to develop sustainable techniques within this field. In the context of the global scenario, due to the growth of renewable production demands that can mitigate the impacts on the environment and health, the green chemistry flourishes as one of the novelties of modern science. Among the protagonists of this science, ionic liquids (ILs) stand out as being highly efficient solvents in the extraction of bioactive compounds. The ILs may be described as organic salts which are liquid in room...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Food and Agricultural Organization of the United Nations (2009) How to feed the world in 2050, Geneva, Switzerland: Economic and Social Development Department

    Google Scholar 

  2. Varzakas T, Zakynthinos G, Verpoort F (2016) Plant food residues as a source of nutraceuticals and functional foods. Foods 5:88

    Article  PubMed Central  Google Scholar 

  3. Alsaffar AA (2016) Sustainable diets: the interaction between food industry, nutrition, health and the environment. Food Sci Technol Int 22:102–111

    Article  PubMed  Google Scholar 

  4. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  5. Anastas PT, Wasserscheid P, Stark A (2014) Green solvents: ionic liquids. John Wiley & Sons

    Google Scholar 

  6. Gionfriddo E, Souza-Silva ÉA, Ho TD, Anderson JL, Pawliszyn J (2018) Exploiting the tunable selectivity features of polymeric ionic liquid-based SPME sorbents in food analysis. Talanta 188:522

    Article  CAS  PubMed  Google Scholar 

  7. Hijo T, Ariel A, Guilherme J, Mariana C, Eduardo A, Antonio J (2016) Applications of ionic liquids in the food and bioproducts industries. ACS Sustain Chem 4:5347

    Article  Google Scholar 

  8. Galanakis CM (2017) Chapter 1 – Introduction. In: Galanakis CM (ed) Nutraceutical and functional food components. Academic Press, pp 1–14

    Google Scholar 

  9. Abdelkarim G, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A (2014) What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutr Food Sci 3:174–179

    Google Scholar 

  10. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A (2014) Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf 13:155–171

    Article  CAS  Google Scholar 

  11. Ribeiro BD, Coelho MAZ, Rebelo LPN, Marrucho IM (2013) Ionic liquids as additives for extraction of Saponins and polyphenols from mate (Ilex paraguariensis) and tea (Camellia sinensis). Ind Eng Chem Res 52:12146–12153

    Article  CAS  Google Scholar 

  12. Ressmann AK, Ronald Z, Martin P, Peter G, Katharina B (2013) Surface-active ionic liquids for micellar extraction of piperine from black pepper. Z Naturforsh B 68:1129

    Article  CAS  Google Scholar 

  13. Du F-Y, Xiao X-H, Li G-K (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62

    Article  CAS  PubMed  Google Scholar 

  14. Bi W, Tian M, Zhou J, Row KH (2010) Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J Chromatogr B 878:2243–2248

    Article  CAS  Google Scholar 

  15. Qin H, Zhou G, Peng G, Li J, Chen J (2015) Application of ionic liquid-based ultrasound-assisted extraction of five phenolic compounds from Fig (Ficus carica L.) for HPLC-UV. Food Anal Methods 8:1673–1681

    Article  Google Scholar 

  16. Feng X, Zhang W, Zhang T, Yao S (2018) Systematic investigation for extraction and separation of polyphenols in tea leaves by magnetic ionic liquids. J Sci Food Agric 98:4550–4560

    Article  CAS  PubMed  Google Scholar 

  17. Kou X, Ke Y, Wang X, Rahman MRT, Xie Y, Chen S, Wang H (2018) Simultaneous extraction of hydrophobic and hydrophilic bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem 257:223–229

    Article  CAS  PubMed  Google Scholar 

  18. Mocan A, Carradori S, Locatelli M et al (2018) Bioactive isoflavones from Pueraria lobata root and starch: different extraction techniques and carbonic anhydrase inhibition. Food Chem Toxicol 112:441–447

    Article  CAS  PubMed  Google Scholar 

  19. Lu C, Wang H, Lv W, Ma C, Lou Z, Xie J, Liu B (2012) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis. Nat Prod Res 26:1842–1847

    Article  CAS  PubMed  Google Scholar 

  20. Sadeghi S, Nasehi Z (2018) Simultaneous determination of Brilliant Green and Crystal Violet dyes in fish and water samples with dispersive liquid-liquid micro-extraction using ionic liquid followed by zero crossing first derivative spectrophotometric analysis method. Spectrochim Acta A Mol Biomol Spectrosc 201:134–142

    Article  CAS  PubMed  Google Scholar 

  21. Santos PL, Santos LNS, Ventura SPM, de Souza RL, Coutinho JAP, Soares CMF, Lima ÁS (2016) Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids. Chem Eng Res Des 112:103–112

    Article  CAS  Google Scholar 

  22. Wang R, Chang Y, Tan Z, Li F (2016) Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels. Sep Sci Technol 51:1093–1102

    Article  Google Scholar 

  23. Passos H, Freire MG, Coutinho JAP (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16:4786–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martins PLG, Braga AR, de Rosso VV (2017) Can ionic liquid solvents be applied in the food industry? Trends Food Sci Technol 66:117–124

    Article  CAS  Google Scholar 

  25. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  26. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  PubMed  Google Scholar 

  27. Orr VCA, Plechkova NV, Seddon KR, Rehmann L (2016) Disruption and wet extraction of the Microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600

    Article  CAS  Google Scholar 

  28. Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maximo GJ, Santos RJBN, Lopes-da-Silva JA, Costa MC, Meirelles AJA, Coutinho JAP (2014) Lipidic protic ionic liquid crystals. ACS Sustain Chem Eng 2:672–682

    Article  CAS  Google Scholar 

  30. Blesic M, Marques MH, Plechkova NV, Seddon KR, Rebelo LPN, Lopes A (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  31. Liu X, Dong L, Fang Y (2010) Synthesis and self-aggregation of a hydroxyl-functionalized imidazolium-based ionic liquid surfactant in aqueous solution. J Surfactant Deterg 14:203–210

    Article  Google Scholar 

  32. Cho Y-H, Kim S, Bae EK, Mok CK, Park J (2008) Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. J Food Sci 73:E115–E121

    Article  CAS  PubMed  Google Scholar 

  33. Heckenbach ME, Romero FN, Green MD, Halden RU (2016) Meta-analysis of ionic liquid literature and toxicology. Chemosphere 150:266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa SPF, Pinto PCAG, Lapa RAS, Saraiva MLMFS (2015) Toxicity assessment of ionic liquids with Vibrio fischeri: an alternative fully automated methodology. J Hazard Mater 284:136–142

    Article  CAS  PubMed  Google Scholar 

  35. Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9:873–877

    Article  CAS  Google Scholar 

  36. Larangeira PM, de Rosso VV, da Silva VHP, de Moura CFG, Ribeiro DA (2016) Genotoxicity, mutagenicity and cytotoxicity of carotenoids extracted from ionic liquid in multiples organs of Wistar rats. Exp Toxicol Pathol 68:571–578

    Article  CAS  PubMed  Google Scholar 

  37. Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitão MC, Gunaratne HQN, Seddon KR, Rebelo LPN, Silva Pereira C (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12:367–369

    Article  CAS  Google Scholar 

  38. Santos E, Albo J, Irabien A (2014) Magnetic ionic liquids: synthesis, properties and applications. RSC Adv 4:40008–40018

    Article  CAS  Google Scholar 

  39. Majed N, Real M, Isreq H, Akter M, Azam HM (2016) Food adulteration and bio-magnification of environmental contaminants: a comprehensive risk framework for Bangladesh. Front Environ Sci 4:34

    Article  Google Scholar 

  40. Pérez-Ibarbia L, Majdanski T, Schubert S, Windhab N, Schubert US (2016) Safety and regulatory review of dyes commonly used as excipients in pharmaceutical and nutraceutical applications. Eur J Pharm Sci 93:264–273

    Article  PubMed  Google Scholar 

  41. Yusuf M, Shabbir M, Mohammad F (2017) Natural colorants: historical, processing and sustainable prospects. Nat Prod Bioprospect 7(1):123–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014(2014). https://doi.org/10.1155/2014/692307

    Article  Google Scholar 

  43. Liu B, Yin C, Wang M (2014) Electrochemical determination of Sudan I in food products using a carbon nanotube-ionic liquid composite modified electrode. Food Addit Contam Part A 31:1818–1825

    Article  CAS  Google Scholar 

  44. Sathiakumar N, MacLennan PA, Mandel J, Delzell E (2011) A review of epidemiologic studies of triazine herbicides and cancer. Crit Rev Toxicol 41:1–34

    Article  CAS  PubMed  Google Scholar 

  45. Wu L, Hu M, Li Z, Song Y, Yu C, Zhang Y, Zhang H, Yu A, Ma Q, Wang Z (2015) Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography. Anal Bioanal Chem 407:1753–1762

    Article  CAS  PubMed  Google Scholar 

  46. Zhang L, Wang C, Li Z, Zhao C, Zhang H, Zhang D (2018) Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation. Food Chem 245:1190–1195

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, Song D (2015) Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid–liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta 888:67–74

    Article  CAS  PubMed  Google Scholar 

  48. Springer VH, Aprile F, Lista AG (2014) Determination of sulfonylureas in cereal samples with electrophoretic method using ionic liquid with dispersed carbon nanotubes as electrophoretic buffer. Food Chem 143:348–353

    Article  CAS  PubMed  Google Scholar 

  49. Ho TD, Zhang C, Hantao LW, Anderson JL (2013) Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 86:262–285

    Article  PubMed  Google Scholar 

  50. Wang T-T, Chen Y-H, Ma J-F, Hu M-J, Li Y, Fang J-H, Gao H-Q (2014) A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives. Anal Bioanal Chem 406:4955–4963

    Article  CAS  PubMed  Google Scholar 

  51. Ahuja S, Scypinski S (2010) Handbook of modern pharmaceutical analysis. Vol. 10. Academic Press

    Google Scholar 

  52. Martín-Calero A, Pino V, Ayala JH, González V, Afonso AM (2009) Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 79:590–597

    Article  PubMed  Google Scholar 

  53. Fan Y, Chen M, Shentu C, El-Sepai F, Wang K, Zhu Y, Ye M (2009) Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Anal Chim Acta 650:65–69

    Article  CAS  PubMed  Google Scholar 

  54. Sun S, Wang Y, Yu W, Zhao T, Gao S, Kang M, Zhang Y, Zhang H, Yu Y (2011) Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid–liquid microextraction and high-performance liquid chromatography. J Sep Sci 34:1730–1737

    Article  CAS  PubMed  Google Scholar 

  55. Yan H, Gao M, Qiao J (2012) New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples. J Agric Food Chem 60:6907–6912

    Article  CAS  PubMed  Google Scholar 

  56. Ho Y, Tsoi Y, Leung KS (2013) Ionic-liquid-based dispersive liquid–liquid microextraction for high-throughput multiple food contaminant screening. J Sep Sci 36:3791–3798

    Article  CAS  PubMed  Google Scholar 

  57. Yu W, Liu Z, Li Q, Zhang H, Yu Y (2015) Determination of Sudan I–IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography. Food Chem 173:815–820

    Article  CAS  PubMed  Google Scholar 

  58. Unsal YE, Soylak M, Tuzen M (2015) Ultrasound-assisted ionic liquid-based dispersive liquid–liquid microextraction for preconcentration of patent blue V and its determination in food samples by UV–visible spectrophotometry. Environ Monit Assess 187:203

    Google Scholar 

  59. Sha O, Zhu X, Feng Y, Ma W (2015) Aqueous two-phase based on ionic liquid liquid–liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography. Food Chem 174:380–386

    Article  CAS  PubMed  Google Scholar 

  60. Barfi B, Asghari A, Rajabi M, Sabzalian S (2015) Organic solvent-free air-assisted liquid–liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step. J Chromatogr B 998:15–25

    Article  Google Scholar 

  61. Wu H, Guo J, Du L, Tian H, Hao C, Wang Z, Wang J (2013) A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar-and gelatin-based confectionery by high-performance liquid chromatography. Food Chem 141:182–186

    Article  CAS  PubMed  Google Scholar 

  62. Li N, Zhang R, Nian L, Ren R, Wang Y, Zhang H, Yu A (2012) Extraction of eight triazine and phenylurea herbicides in yogurt by ionic liquid foaming-based solvent floatation. J Chromatogr A 1222:22–28

    Article  CAS  PubMed  Google Scholar 

  63. Zhang L, Yu R, Wang Z, Li N, Zhang H, Yu A (2014) Determination of triazine herbicides in vegetables by ionic liquid foam floatation solid phase extraction high performance liquid chromatography. J Chromatogr B 953:132–137

    Article  Google Scholar 

  64. Zhang L, Wang Z, Li N, Yu A, Zhang H (2014) Ionic liquid-based foam flotation followed by solid phase extraction to determine triazine herbicides in corn. Talanta 122:43–50

    Article  CAS  PubMed  Google Scholar 

  65. Wang Z, Zhang L, Li N, Lei L, Shao M, Yang X, Song Y, Yu A, Zhang H, Qiu F (2014) Ionic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid–liquid microextraction of synthetic dyes in condiments. J Chromatogr A 1348:52–62

    Article  CAS  PubMed  Google Scholar 

  66. Wu L, Song Y, Hu M, Yu C, Zhang H, Yu A, Ma Q, Wang Z (2015) Ionic-liquid-impregnated resin for the microwave-assisted solid–liquid extraction of triazine herbicides in honey. J Sep Sci 38:2953–2959

    Article  CAS  PubMed  Google Scholar 

  67. Zhang L, Cao B, Yao D, Yu R, Yu C, Zhang H, Yu A (2015) Separation and concentration of sulfonylurea herbicides in milk by ionic-liquid-based foam flotation solid-phase extraction. J Sep Sci 38: 1733–1740

    Article  CAS  PubMed  Google Scholar 

  68. Li X, Wei S, Sun Y, Sun Q, Liang L, Zhang B, Piao H, Song D, Wang X (2016) Glass slides functionalized by 1-carboxyethyl-3-methylimidazolium chloride for the determination of triazine herbicides in rice using high-performance liquid chromatography. J Sep Sci 39:4585–4591

    Article  CAS  PubMed  Google Scholar 

  69. Su R, Li D, Wu L, Han J, Lian W, Wang K, Yang H (2017) Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography. J Sep Sci 40:2950–2958

    Article  CAS  PubMed  Google Scholar 

  70. Tian H, Bai X, Xu J (2017) Simultaneous determination of simazine, cyanazine, and atrazine in honey samples by dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. J Sep Sci 40:3882–3888

    Article  CAS  PubMed  Google Scholar 

  71. Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ (2009) Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. J Chromatogr A 1216:7281–7287

    Article  CAS  PubMed  Google Scholar 

  72. Ping J, Wang Y, Wu J, Ying Y, Ji F (2012) Determination of ascorbic acid levels in food samples by using an ionic liquid–carbon nanotube composite electrode. Food Chem 135:362–367

    Article  CAS  PubMed  Google Scholar 

  73. Calvano CD, De Ceglie C, D’Accolti L, Zambonin CG (2012) MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem 134:1192–1198

    Article  CAS  PubMed  Google Scholar 

  74. Fan C, Li N, Cao X (2015) Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid–liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem 174:446–451

    Article  CAS  PubMed  Google Scholar 

  75. Sun B, Qi L, Wang M (2014) Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives. J Sep Sci 37:2248–2252

    Article  CAS  PubMed  Google Scholar 

  76. Toledo BR, Hantao LW, Ho TD, Augusto F, Anderson JL (2014) A chemometric approach toward the detection and quantification of coffee adulteration by solid-phase microextraction using polymeric ionic liquid sorbent coatings. J Chromatogr A 1346:1–7

    Article  CAS  PubMed  Google Scholar 

  77. Jha SN (2015) Rapid detection of food adulterants and contaminants: theory and practice. Academic Press

    Google Scholar 

  78. Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids – a review. Process Biochem 49:872–881

    Article  CAS  Google Scholar 

  79. Bica K, Gaertner P, Rogers RD (2011) Ionic liquids and fragrances–direct isolation of orange essential oil. Green Chem 13:1997–1999

    Article  CAS  Google Scholar 

  80. Montalvo-Hernández B, Rito-Palomares M, Benavides J (2012) Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems. J Chromatogr A 1236:7–15

    Article  PubMed  Google Scholar 

  81. Cláudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002–2010

    Article  Google Scholar 

  82. Zirbs R, Strassl K, Gaertner P, Schröder C, Bica K (2013) Exploring ionic liquid–biomass interactions: towards the improved isolation of shikimic acid from star anise pods. RSC Adv 3:26010–26016

    Article  CAS  Google Scholar 

  83. Ma S, Hu L, Ma C, Lv W, Wang H (2014) Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography. J Sep Sci 37:2314–2321

    Article  CAS  PubMed  Google Scholar 

  84. Martins PLG, de Rosso VV (2016) Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound-assisted completely solvent-free method. Food Res Int 82: 156–164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the São Paulo Research Foundation (FAPESP) (grants 2016/18910-1; 2016/23242-8; 2015/26789-5) and the National Council of Technological and Scientific Development (CNPq) (grants 303956/2015-1; 432758/2018-6) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veridiana Vera de Rosso .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Souza Mesquita, L.M., Murador, D.C., de Rosso, V.V. (2019). Application of Ionic Liquid Solvents in the Food Industry. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics