Skip to main content

Applications of Ionic Liquids in Clean and Valuable Utilization of Coal: From Aspects of Environment

  • Living reference work entry
  • First Online:
Encyclopedia of Ionic Liquids
  • 209 Accesses

Introduction

Low-rank coals (LRCs) are important carbon resources on earth and have some specific properties different from high-rank coals (HRCs), such as the high content of water, volatile components, and oxygen, but low calorific value. These defects make LRCs not suitable for direct combustion as primary energy sources like HRCs due to the low energy efficiency and pollution problems. Therefore, the clean and valuable utilization of LRCs becomes significantly important. The specific structures and properties of LRCs make it possible to be used as non-energy sources. Therefore, the fundamental and practical studies on utilizing LRCs can be gradually categorized into two directions, (1) improving the efficiency and decreasing pollutions for the traditional utilizing approaches, such as pyrolysis, liquefaction, gasification, and combustion, and (2) exploring novel, clean, and valuable utilization of coals or their derivatives. As the alternative of traditional approaches, LRCs could...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

[AMIM]Cl:

1-Allyl-3-methylimidazolium chloride

[AMIM]BF4:

1-Allyl-3-methylimidazolium tetrafluoroborate

[AOEMIM]BF4:

1-((Ethoxycarbonyl)methyl)-3-methylimidazolium tetrafluoroborate

[BDMIM]Cl:

1-Butyl-2,3-dimethylimidazolium chloride

[BMIM]Cl:

1-Butyl-3-methylimidazolium chloride

[BMIM]I:

1-Butyl-3-methylimidazolium iodide

[BMIM]OH:

1-Butyl-3-methylimidazolium hydroxide

[BMIM]AC:

1-Butyl-3-methylimidazolium acetate

[BMIM]BF4:

1-Butyl-3-methylimidazolium tetrafluoroborate

[BMIM]BrO3:

1-Butyl-3-methylimidazolium bromate

[BMIM]NO3:

1-Butyl-3-methylimidazolium nitrate

[BMIM]PF6:

1-Butyl-3-methylimidazolium hexafluorophosphate

[BMIM]OTf:

1-Butyl-3-methylimidazolium trifluoromethanesulfonate

[BMIM]H2PO4:

1-Butyl-3-methyl-imidazolium dihydrogen phosphate

[BMIM]FeCl4:

1-Butyl-3-methylimidazolium tetrachloroferrate

[BMIM]CF3SO3:

1-Butyl-3-methylimidazolium trifluoromethanesulfonate

[BMIM]TCM:

1-Butyl-3-methylimidazolium tricyanomethanide

[B(SO3H)MIM]OTf:

1-Sulfonic acid butyl-3-methylimidazolium trifluoromethanesulfonate

[EMIM]Cl:

1-Ethyl-3-methylimidazolium chloride

[EMIM]I:

1-Ethyl-3-methylimidazolium iodide

[EMIM]AC:

1-Ethyl-3-methylimidazolium acetate

[EMIM]BF4:

1-Ethyl-3-methylimidazolium tetrafluoroborate

[EMIM]DCM:

1-Ethyl-3-methylimidazolium dicyanamide

[EMIM]NTf2:

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[EOMIM]BF4:

1-Methoxyethyl-3-methylimidazolium tetrafluoroborate

[HOEtMIM]BF4:

1-Hydroxyethyl-3-methylimidazolium tetrafluoroborate

[HOEtMIM]NTf2:

1-Hydroxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

[MMIM]I:

1,3-Dimethylimidazolium iodide

[PMIM]I:

1-Propyl-3-methylimidazolium iodide

[PMIM]BF4:

1-Propyl-3-methylimidazolium tetrafluoroborate

[BMP]Cl:

1-Butyl-4-methylpyridinium chloride

[BPy]FeCl4:

N-Butylpyridinium tetrachloroferrate

[BPYD]Cl:

1-Butylpyridinium chloride

[BMP]FeCl4:

1-Butyl-1-methylpyrrolium tetrachloroferrate

[Py]BF4:

Pyridinium tetrafluoroborate

DACARB:

N,N-Diallylammonium N',N'-diallylcarbamate

DBCARB:

N,N-Bisethylhexylammonium N',N'-bisethylhexylcarbamate

DECARB:

N,N-Diethylammonium N',N'-diethylcarbamate

DIMCARB:

N, N-Dimethylammonium N', N'-dimethylcarbamate

DPCARM:

N,N-Dipropylammonium N',N'-dipropylcarbamate

[P4,4,4,1]MeSO4:

Tributylmethylphosphonium methylsulfate

[P4,4,4,1]NTf2:

Tributyl(methyl)phosphonium bis(trifluoromethylsulfonyl)imide

[P4,4,4,2]DEP:

Tributylethylphosphonium diethylphosphate

[P4,4,4,4]Br:

Tetrabutylphosphonium bromide

[P6,6,6,14]Cl:

Trihexyltetradecylphosphonium chloride

[P6,6,6,14]Br:

Trihexyltetradecylphosphonium bromide

[P6,6,6,14]Bis:

Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate

[P6,6,6,14]NTf2:

Trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)

[P6,6,6,14]N(CN)2:

Trihexyltetradecylphosphonium dicyanamide

[Ch]ALA:

Choline alaninate

[Ch]ARG:

Choline argininate

[Ch]ASP:

Choline aspartate

[Ch]GLY:

Choline glycinate

[Ch]LEU:

Choline leucinate

[Ch]LYS:

Choline lysinate

[Ch]PHE:

Choline phenyl-alaninate

[Ch]VAL:

Choline valaninate

References

  1. Liu FJ, Wei XY, Fan MH, Zong ZM (2016) Separation and structural characterization of the value-added chemicals from mild degradation of lignites: a review. Appl Energ 170:415–436. https://doi.org/10.1016/j.apenergy.2016.02.131

    Article  CAS  Google Scholar 

  2. Sha YF, Xiao ZH, Zhou HC, Yang KL, Song YM, Li N, He RX, Zhi KD, Liu QS (2017) Direct use of humic acid mixtures to construct efficient Zr-containing catalysts for Meerwein–Ponndorf–Verley reactions. Green Chem 19(20):4829–4837. https://doi.org/10.1039/c7gc01925d

    Article  CAS  Google Scholar 

  3. Sreedhar I, Nahar T, Venugopal A, Srinivas B (2017) Carbon capture by absorption – path covered and ahead. Renew Sust Energ Rev 76:1080–1107. https://doi.org/10.1016/j.rser.2017.03.109

    Article  CAS  Google Scholar 

  4. Ibrahim MH, Hayyan M, Hashim MA, Hayyan A (2017) The role of ionic liquids in desulfurization of fuels: a review. Renew Sust Energ Rev 76:1534–1549. https://doi.org/10.1016/j.rser.2016.11.194

    Article  CAS  Google Scholar 

  5. Kunov-Kruse AJ, Thomassen PL, Riisager A, Mossin S, Fehrmann R (2016) Absorption and oxidation of nitrogen oxide in ionic liquids. Chem-Eur J 22(33):11745–11755. https://doi.org/10.1002/chem.201601166

    Article  CAS  PubMed  Google Scholar 

  6. Painter P, Pulati N, Cetiner R, Sobkowiak M, Mitchell G, Mathews J (2010) Dissolution and dispersion of coal in ionic liquids. Energy Fuel 24(3):1848–1853. https://doi.org/10.1021/ef9013955

    Article  CAS  Google Scholar 

  7. Pulati N, Sobkowiak M, Mathews JP, Painter P (2012) Low-temperature treatment of Illinois no. 6 coal in ionic liquids. Energy Fuel 26(6):3548–3552. https://doi.org/10.1021/ef3002923

    Article  CAS  Google Scholar 

  8. Cummings J, Kundu S, Tremain P, Moghtaderi B, Atkin R, Shah K (2015) Investigations into physico-chemical changes in thermal toals during low-temperature ionic liquid treatment. Energy Fuel 29:7080–7088. https://doi.org/10.1021/acs.energyfuels.5b01824

    Article  CAS  Google Scholar 

  9. Cummings J, Tremain P, Shah K, Heldt E, Moghtaderi B, Atkin R, Kundu S, Vuthaluru H (2017) Modification of lignites via low temperature ionic liquid treatment. Fuel Process Technol 155:51–58. https://doi.org/10.1016/j.fuproc.2016.02.040

    Article  CAS  Google Scholar 

  10. Lei ZP, Hu ZQ, Zhang H, Han LN, Shui HF, Ren SB, Wang ZC, Kang SG, Pan CX (2016) Pyrolysis of lignite following low temperature ionic liquid pretreatment. Fuel 166:124–129. https://doi.org/10.1016/j.fuel.2015.10.059

    Article  CAS  Google Scholar 

  11. Yu WH, Zhang H, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX (2019) Pretreatment of lignite by acidic bronsted ionic liquid [B(SO3H)mim]OTf for lignite pyrolysis. Fuel 236:861–869. https://doi.org/10.1016/j.fuel.2018.07.150

    Article  CAS  Google Scholar 

  12. Lei ZP, Zhang K, Hu ZQ, Zhang H, Shui HF, Ren SB, Wang ZC, Kang SG, Pan CX (2016) Effect of ionic liquid 1-butyl-3-methyl-imidazolium dihydrogen phosphate pretreatment on pyrolysis of Shengli lignite. Fuel Process Technol 147:26–31. https://doi.org/10.1016/j.fuproc.2016.01.016

    Article  CAS  Google Scholar 

  13. Cummings J, Shah K, Atkin R, Moghtaderi B (2015) Physicochemical interactions of ionic liquids with coal: the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel 143:244–252. https://doi.org/10.1016/j.fuel.2014.11.042

    Article  CAS  Google Scholar 

  14. S-p Y, Deng L, Namkung H, Fan S, Kang T-J, Kim H-T (2017) Coal structure change by ionic liquid pretreatment for enhancement of fixed-bed gasification with steam and CO2. Korean J Chem Eng 35(2):445–455. https://doi.org/10.1007/s11814-017-0296-6

    Article  CAS  Google Scholar 

  15. Lei ZP, Dong L, Kang SG, Huang YQ, Li ZK, Yan JC, Shui HF, Wang ZC, Ren SB, Pan CX (2019) Dissociation behaviors of coal-related model compounds in ionic liquids. Fuel 241:1019–1025. https://doi.org/10.1016/j.fuel.2018.12.117

    Article  CAS  Google Scholar 

  16. Zhang WQ, Jiang SG, Wang K, Wu ZY, Shao H (2012) An experimental study of the effect of ionic liquids on the low temperature oxidation of coal. Int J Min Sci Technol 22(5):687–691. https://doi.org/10.1016/j.ijmst.2012.08.016

    Article  CAS  Google Scholar 

  17. Zhang WQ, Jiang SG, Wu ZY, Shao H, Wang K (2013) Effect of ionic liquids on low-temperature oxidation of coal. Int J Coal Prep Util 33(2):90–98. https://doi.org/10.1080/19392699.2013.763231

    Article  CAS  Google Scholar 

  18. Zhang WQ, Jiang SG, Hardacre C, Goodrich P, Wang K, Wu ZY, Shao H (2014) Inhibitory effect of Phosphonium-based ionic liquids on coal oxidation. Energy Fuel 28(7):4333–4341. https://doi.org/10.1021/ef402229z

    Article  CAS  Google Scholar 

  19. Wang L-Y, Xu Y-L, Jiang S-G, Yu M-G, Chu T-X, Zhang W-Q, Wu Z-Y, Kou L-W (2012) Imidazolium based ionic liquids affecting functional groups and oxidation properties of bituminous coal. Safety Sci 50(7):1528–1534. https://doi.org/10.1016/j.ssci.2012.03.006

    Article  Google Scholar 

  20. Xiao Y, Lü H-F, Yi X, Deng J, Shu C-M (2018) Treating bituminous coal with ionic liquids to inhibit coal spontaneous combustion. J Therm Anal Calorim 135(5):2711–2721. https://doi.org/10.1007/s10973-018-7600-5

    Article  CAS  Google Scholar 

  21. Deng J, Bai Z-J, Xiao Y, Shu C-M, Laiwang B (2019) Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation. Fuel 246:160–168. https://doi.org/10.1016/j.fuel.2019.02.066

    Article  CAS  Google Scholar 

  22. Cui F-S, Laiwang B, Shu C-M, Jiang J-C (2018) Inhibiting effect of imidazolium-based ionic liquids on the spontaneous combustion characteristics of lignite. Fuel 217:508–514. https://doi.org/10.1016/j.fuel.2017.12.092

    Article  CAS  Google Scholar 

  23. Zhang WQ, Jiang SG, Wu ZY, Wang K, Shao H, Qin T, Xi X, Tian HB (2018) Influence of imidazolium-based ionic liquids on coal oxidation. Fuel 217:529–535. https://doi.org/10.1016/j.fuel.2017.12.056

    Article  CAS  Google Scholar 

  24. Xi X, Jiang SG, Zhang WQ, Wang K, Shao H, Wu ZY (2019) An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal. Fuel 244:176–183. https://doi.org/10.1016/j.fuel.2019.01.183

    Article  CAS  Google Scholar 

  25. Zhang WQ, Jiang SG, Sun JF, Wu ZY, Qin T, Xi X (2018) Wettability of coal by room temperature ionic liquids. Int J Coal Prep Util:1–10. https://doi.org/10.1080/19392699.2018.1488692

  26. Lei ZP, Wu L, Zhang YQ, Shui HF, Wang ZC, Pan CX, Li HP, Ren SB, Kang SG (2012) Microwave-assisted extraction of Xianfeng lignite in 1-butyl-3-methyl-imidazolium chloride. Fuel 95:630–633. https://doi.org/10.1016/j.fuel.2011.12.006

    Article  CAS  Google Scholar 

  27. Lei ZP, Wu L, Zhang YQ, Shui HF, Wang ZC, Ren SB (2013) Effect of noncovalent bonds on the successive sequential extraction of Xianfeng lignite. Fuel Process Technol 111:118–122. https://doi.org/10.1016/j.fuproc.2013.02.004

    Article  CAS  Google Scholar 

  28. Wang JL, Yao HW, Nie Y, Bai L, Zhang XP, Li JW (2012) Application of iron-containing magnetic ionic liquids in extraction process of coal direct liquefaction residues. Ind Eng Chem Res 51(9):3776–3782. https://doi.org/10.1021/ie202940k

    Article  CAS  Google Scholar 

  29. Lei ZP, Zhang YQ, Wu L, Shui HF, Wang ZC, Ren SB (2013) The dissolution of lignite in ionic liquids. RSC Adv 3(7):2385. https://doi.org/10.1039/c2ra23097f

    Article  CAS  Google Scholar 

  30. Sharma DK, Dhawan H (2018) Separative refining of coals through solvolytic extraction under milder conditions: a review. Ind Eng Chem Res 57(25):8361–8380. https://doi.org/10.1021/acs.iecr.8b00345

    Article  CAS  Google Scholar 

  31. Yu WH, Zhu P, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX (2018) Study of pyrolysis behavior of Shenhua coal pretreated by ionic liquid 1-Ethyl-3-Methylimidazolium acetate. Int J Chem React Eng 16(7). https://doi.org/10.1515/ijcre-2017-0244

  32. Jin LJ, Qi Y, Chaffee AL (2018) Effect of temperature on the solubility of Victorian brown coal in the ionic liquid DIMCARB. Fuel 216:752–759. https://doi.org/10.1016/j.fuel.2017.11.133

    Article  CAS  Google Scholar 

  33. Qi Y, Verheyen TV, Tikkoo T, Vijayaraghavan R, MacFarlane DR, Chaffee AL (2015) High solubility of Victorian brown coal in ‘distillable’ ionic liquid DIMCARB. Fuel 158:23–34. https://doi.org/10.1016/j.fuel.2015.04.060

    Article  CAS  Google Scholar 

  34. Qi Y, Verheyen TV, Vijayaraghavan R, MacFarlane DR, Chaffee AL (2016) Ambient temperature solubilisation of brown coal in ammonium carbamate ionic liquids. Fuel 166:106–115. https://doi.org/10.1016/j.fuel.2015.10.064

    Article  CAS  Google Scholar 

  35. Sönmez Ö, Yıldız Ö, Çakır MÖ, Gözmen B, Giray ES (2018) Influence of the addition of various ionic liquids on coal extraction with NMP. Fuel 212:12–18. https://doi.org/10.1016/j.fuel.2017.10.017

    Article  CAS  Google Scholar 

  36. Z-q H, S-f Z, Z-p L, H-f S, Z-c W, S-b R (2015) Study on the thermal extraction of Xianfeng lignite in ionic liquid 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate. J Fuel Chem Technol 43(5):513–518. https://doi.org/10.1016/s1872-5813(15)30014-1

    Article  Google Scholar 

  37. To TQ, Shah K, Tremain P, Simmons BA, Moghtaderi B, Atkin R (2017) Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel 202:296–306. https://doi.org/10.1016/j.fuel.2017.04.051

    Article  CAS  Google Scholar 

  38. Wang XL, Nie Y, Zhang XP, Zhang SJ, Li JW (2012) Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. Desalination 285:205–212. https://doi.org/10.1016/j.desal.2011.10.003

    Article  CAS  Google Scholar 

  39. Zhou JJ, Sui H, Jia ZD, Yang ZQ, He L, Li XG (2018) Recovery and purification of ionic liquids from solutions: a review. RSC Adv 8:32832–32846. https://doi.org/10.1039/c8ra06384b

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This entry was supported by the National Natural Science Foundation of China (21606134, 21676149, and 21566029) and the Innovative and Entrepreneurial Talents Grassland Talents Engineering of Inner Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quansheng Liu or Limin Han .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhou, H., Liu, Q., Han, L. (2019). Applications of Ionic Liquids in Clean and Valuable Utilization of Coal: From Aspects of Environment. In: Zhang, S. (eds) Encyclopedia of Ionic Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-10-6739-6_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6739-6_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6739-6

  • Online ISBN: 978-981-10-6739-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics