Skip to main content

Analysis of Renewable Energy Devices

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering
  • 369 Accesses

Synonyms

BEM – Blade element momentum; CFD – Computational fluid dynamics; DLL – Dynamic-link library; FEM – Finite element method; GDW – Generalized dynamic wake theory; HAWT – Horizontal-axis wind turbine; MBS – Multibody simulation; ME – Morison’s equation; OWT – Offshore wind turbine

Definition

Analysis refers to the application of scientific and engineering principles and processes to reveal the properties of a system.

Introduction

Renewable energy devices may operate in complex internal and external conditions, and engineering analysis is a key element of the design process. Because of the sophisticated physics associated with specific renewable energy devices, simplified analysis is often not adequate for a full understanding of the system behavior. With the advent of information and digital technologies, analysis at various fidelity levels can be achieved using simulation tools. To reduce the computational costs and to validate the accuracy of simulation tools, significant...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airy GB (1841) Tides and waves. Encyclopaedia Metropolitana, London, 5, p 241

    Google Scholar 

  • American Bureau of Shipping (ABS) (2018) Rules for building and classing mobile offshore drilling units, Part 3, Hull construction and equipment. Houston

    Google Scholar 

  • Bachynski EE, Moan T (2012) Design considerations for tension leg platform wind turbines. Mar Struct 29(1):89–114

    Article  Google Scholar 

  • Biran A, Pulido RL (2013) Ship hydrostatics and stability. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • Buhagiar D, Sant T (2017) Modelling of a novel hydro-pneumatic accumulator for large-scale offshore energy storage applications. J Energy Storage 14:283–294

    Article  Google Scholar 

  • Buhagiar D, Sant T, Bugeja M (2016) A comparison of two pressure control concepts for hydraulic offshore wind turbines. J Dyn Syst Meas Control 138(8):081007

    Article  Google Scholar 

  • Burton T, Jenkins N, Sharpe D, Bossanyi E (2011) Wind energy handbook. Wiley, Chichester

    Book  Google Scholar 

  • Butterfield CP, Musial W, Jonkman J, Sclavounos P, Wayman L (2007) Engineering challenges for floating offshore wind turbines. National Renewable Energy Laboratory, CO, USA

    Google Scholar 

  • Chella MA, Tørum A, Myrhaug D (2012) An overview of wave impact forces on offshore wind turbine substructures. Energy Procedia 20:217–226

    Article  Google Scholar 

  • Chen I-W, Wong B-L, Lin Y-H, Chau S-W, Huang H-H (2016) Design and analysis of jacket substructures for offshore wind turbines. Energies 9(4):264

    Article  Google Scholar 

  • Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM, Dagher HJ (2013) Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data. J Renewable Sustainable Energy 5(2):023116

    Article  Google Scholar 

  • Craik AD (2004) The origins of water wave theory. Annu Rev Fluid Mech 36:1–28

    Article  MathSciNet  MATH  Google Scholar 

  • De Vaal J, Hansen ML, Moan T (2014) Effect of wind turbine surge motion on rotor thrust and induced velocity. Wind Energy 17(1):105–121

    Article  Google Scholar 

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists, vol 2. World Scientific Publishing, Singapore

    Google Scholar 

  • DNV (2010) Recommended Practice DNV-RP-C205 Environmental conditions and environmental loads. Høvik, Norway

    Google Scholar 

  • DNV GL (2013) Offshore standard DNVGL-OS-C301 Stability and watertight integrity. Høvik, Norway

    Google Scholar 

  • Dong W, Moan T, Gao Z (2011) Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain. Eng Struct 33(6):2002–2014

    Article  Google Scholar 

  • Dong W, Xing Y, Moan T (2012) Time domain modeling and analysis of dynamic gear contact force in a wind turbine gearbox with respect to fatigue assessment. Energies 5(11):4350–4371

    Article  Google Scholar 

  • Faltinsen OM (1993) Sea loads on ships and offshore structures, vol 1. Cambridge University Press, UK

    Google Scholar 

  • Faltinsen OM, Landrini M, Greco M (2004) Slamming in marine applications. J Eng Math 48(3–4):187–217

    Article  MATH  Google Scholar 

  • Glauert H (1983) The elements of aerofoil and airscrew theory. Cambridge University Press, UK

    Google Scholar 

  • Hansen MH (2003) Improved modal dynamics of wind turbines to avoid stall-induced vibrations. Wind Energy 6(2):179–195

    Article  Google Scholar 

  • Hansen MH (2007) Aeroelastic instability problems for wind turbines. Wind Energy 10(6):551–577

    Article  Google Scholar 

  • Hansen MOL (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan, London

    Google Scholar 

  • Hansen MOL, Aagaard Madsen H (2011) Review paper on wind turbine aerodynamics. Trans ASME-I-J Fluids Eng 133(11):114001

    Article  Google Scholar 

  • Harris TA, Kotzalas MN (2007) Rolling bearing analysis: essential concepts of bearing technology, 5th edn. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy 31(2):271–283

    Article  MathSciNet  Google Scholar 

  • Jiang Z (2018) The impact of a passive tuned mass damper on offshore single-blade installation. J Wind Eng Ind Aerodyn 176:65–77

    Article  Google Scholar 

  • Jiang Z, Karimirad M, Moan T (2013a) Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events. Wind Energy 17(9):1385–1409

    Google Scholar 

  • Jiang Z, Karimirad M, Moan T (2013b) Response analysis of parked spar-type wind turbine considering blade-pitch mechanism fault. Int J Offshore Polar Eng 23(02):120–128

    Google Scholar 

  • Jiang Z, Xing Y, Guo Y, Moan T, Gao Z (2014a) Long-term contact fatigue analysis of a planetary bearing in a land-based wind turbine drivetrain. Wind Energy 18(4):591–611

    Article  Google Scholar 

  • Jiang Z, Yang L, Gao Z, Moan T (2014b) Numerical simulation of a wind turbine with a hydraulic transmission system. Energy Procedia 53:44–55

    Article  Google Scholar 

  • Jiang Z, Moan T, Gao Z (2015) A comparative study of shutdown procedures on the dynamic responses of wind turbines. J Offshore Mech Arct Eng 137(1):011904

    Article  Google Scholar 

  • Jiang Z, Zhu X, Hu W (2018) Modeling and analysis of offshore floating wind turbines. In: Advanced wind turbine technology. Springer, New York, USA, pp 247–280

    Chapter  Google Scholar 

  • Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine, Technical report no. NREL/TP-500-41958, National Renewable Energy Lab.(NREL), Golden

    Google Scholar 

  • Jonkman J, Buhl Jr, ML (2005) FAST user’s guide. National Renewable Energy Laboratory, Golden, Technical report no. NREL/EL-500-38230

    Google Scholar 

  • Jonkman J, Butterfield S, Passon P, Larsen T, Camp T, Nichols J, Azcona J, Martinez A (2008) Offshore code comparison collaboration within IEA wind annex XXIII: phase II results regarding monopile foundation modeling. Technical report no. NREL/CP-500-47534, National Renewable Energy Lab.(NREL), Golden

    Google Scholar 

  • Karimirad M, Michailides C (2015) V-shaped semisubmersible offshore wind turbine: an alternative concept for offshore wind technology. Renew Energy 83:126–143

    Article  Google Scholar 

  • Krogstad P-Å, Eriksen PE (2013) “Blind test” calculations of the performance and wake development for a model wind turbine. Renew Energy 50:325–333

    Article  Google Scholar 

  • Kurniawan A, Pedersen E, Moan T (2012) Bond graph modelling of a wave energy conversion system with hydraulic power take-off. Renew Energy 38(1):234–244

    Article  Google Scholar 

  • Kvittem MI, Bachynski EE, Moan T (2012) Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine. Energy Procedia 24:351–362

    Article  Google Scholar 

  • Larsen TJ (2009) How 2 HAWC2, the user’s manual. Risø National Laboratory, Technical University of Denmark, Roskilde

    Google Scholar 

  • Larsen TJ, Madsen HA, Larsen GC, Hansen KS (2013) Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy 16(4):605–624

    Article  Google Scholar 

  • Lee C-H (1995) WAMIT theory manual. Massachusetts Institute of Technology, Department of Ocean Engineering. Boston, USA

    Google Scholar 

  • Lefebvre S, Collu M (2012) Preliminary design of a floating support structure for a 5 MW offshore wind turbine. Ocean Eng 40:15–26

    Article  Google Scholar 

  • Li Y, Calisal SM (2010) Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew Energy 35(10):2325–2334

    Article  Google Scholar 

  • Li Y, Yu Y-H (2012) A synthesis of numerical methods for modeling wave energy converter-point absorbers. Renew Sust Energ Rev 16(6):4352–4364

    Article  Google Scholar 

  • LM Wind Power, The worlds’s longest blade. https://www.lmwindpower.com/en/stories-and-press/stories/news-from-lm-places/record-breaking-lm-88-4-blade. Accessed 18 Oct 2018

  • Luan C, Gao Z, Moan T (2016) Design and analysis of a braceless steel 5-MW semi-submersible wind turbine. In: ASME 2016 35th international conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, pp V006T009A052-V006T009A052

    Google Scholar 

  • Luan C, Gao Z, Moan T (2018) Comparative analysis of numerically simulated and experimentally measured motions and sectional forces and moments in a floating wind turbine hull structure subjected to combined wind and wave loads. Eng Struct 177:210–233

    Article  Google Scholar 

  • McNiff BP, Musial WD, Errichello R (1991) Variations in gear fatigue life for different wind turbine braking strategies. Solar Energy Research Institute, Golden

    Google Scholar 

  • Moriarty PJ, Hansen AC (2005) AeroDyn theory manual. Technical report NREL/TP-500-36881, National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Morison J, Johnson J, Schaaf S (1950) The force exerted by surface waves on piles. J Pet Technol 2(5):149–154

    Article  Google Scholar 

  • Muliawan MJ, Gao Z, Moan T, Babarit A (2013a) Analysis of a two-body floating wave energy converter with particular focus on the effects of power take-off and mooring systems on energy capture. J Offshore Mech Arct Eng 135(3):031902

    Article  Google Scholar 

  • Muliawan MJ, Karimirad M, Moan T (2013b) Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renew Energy 50:47–57

    Article  Google Scholar 

  • Nejad AR, Gao Z, Moan T (2014) On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains. Int J Fatigue 61:116–128

    Article  Google Scholar 

  • Nejad AR, Jiang Z, Gao Z, Moan T (2016) Drivetrain load effects in a 5-MW bottom-fixed wind turbine under blade-pitch fault condition and emergency shutdown. J Phys Conf Ser, vol 11. IOP Publishing, p 112011

    Google Scholar 

  • Nielsen FG (2013) Hywind-Deep offshore wind operational experience. 10th Deep Sea Offshore Wind R&D conference, Trondheim

    Google Scholar 

  • Nielsen FG, Hanson TD, Skaare B (2006) Integrated dynamic analysis of floating offshore wind turbines. In: Proceedings of 25th international conference on offshore mechanics and arctic engineering, pp OMAE2006-92291, Hamburg

    Google Scholar 

  • Ning SA (2014) A simple solution method for the blade element momentum equations with guaranteed convergence. Wind Energy 17(9):1327–1345

    Google Scholar 

  • NORSOK (2007) Standard N-003: actions and action effects. Standards Norway, Lysaker

    Google Scholar 

  • Passon P, Kühn M, Butterfield S, Jonkman J, Camp T Larsen TJ (2007) OC3—Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes, conference paper NREL/CP-500-41930. The European academy of wind energy special topic conference: the science of making torque from wind, University of Denmark, Lyngby, p 012071

    Google Scholar 

  • Pereya BT, Jiang Z, Gao Z, Anderson MT, Stiesdal H (2018) Parametric study of a counter weight suspension system for the tetraspar floating wind turbine. In: Proceedings of the ASME 2018 international offshore wind technical conference, IOWTC 2018, San Francisco

    Google Scholar 

  • Pitt DM, Peters DA (1980) Theoretical prediction of dynamic-inflow derivatives. Sixth European rotorcraft and powered lift aircraft forum, Bristol

    Google Scholar 

  • Popko W, Vorpahl F, Zuga A, Kohlmeier M, Jonkman J, Robertson A, Larsen TJ, Yde A, Sætertrø K, Okstad KM (2012) Offshore code comparison collaboration continuation (OC4), phase 1-results of coupled simulations of an offshore wind turbine with jacket support structure. In: Proceedings of the twenty-second international offshore and polar engineering conference. Rhodes, Greece

    Google Scholar 

  • Ruehl K, Michelen C, Kanner S, Lawson M, Yu Y-H (2014) Preliminary verification and validation of WEC-Sim, an open-source wave energy converter design tool. In: Proceedings of the ASME 2014 33rd international conference on ocean, offshore and arctic engineering, San Francisco, USA, American Society of Mechanical Engineers, pp V09BT09A040-V009BT009A040

    Google Scholar 

  • Salehyar S, Li Y, Zhu Q (2017) Fully-coupled time-domain simulations of the response of a floating wind turbine to non-periodic disturbances. Renew Energy 111:214–226

    Article  Google Scholar 

  • Saletti M (2018) Comparative numerical and experimental study of the global responses of the spar-torus-combination in extreme waves due to the bottom slamming effect. Master thesis, Department of Marine Technology, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  • Sarpkaya T (2010) Wave forces on offshore structures. Cambridge University Press, New York

    Book  Google Scholar 

  • Schløer S, Bredmose H, Bingham HB (2016) The influence of fully nonlinear wave forces on aero-hydro-elastic calculations of monopile wind turbines. Mar Struct 50:162–188

    Article  Google Scholar 

  • Shi W, Park H, Chung C, Baek J, Kim Y, Kim C (2013a) Load analysis and comparison of different jacket foundations. Renew Energy 54:201–210

    Article  Google Scholar 

  • Shi W, Park H, Han J, Na S, Kim C (2013b) A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea. Renew Energy 58:50–59

    Article  Google Scholar 

  • Shi W, Tan X, Gao Z, Moan T (2016) Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions. Cold Reg Sci Technol 123:121–139

    Article  Google Scholar 

  • Shirzadeh R, Devriendt C, Bidakhvidi MA, Guillaume P (2013) Experimental and computational damping estimation of an offshore wind turbine on a monopile foundation. J Wind Eng Ind Aerodyn 120:96–106

    Article  Google Scholar 

  • Suzuki A (2000) Application of dynamic inflow theory to wind turbine rotors. Doctoral thesis, The University of Utah

    Google Scholar 

  • Velarde J (2016) Design of monopile foundations to support the DTU 10 MW offshore wind turbine. Master thesis, Department of Marine Technology, Norwegian University of Science and Technology

    Google Scholar 

  • Veldkamp H, Van Der Tempel J (2005) Influence of wave modelling on the prediction of fatigue for offshore wind turbines. Wind Energy 8(1):49–65

    Article  Google Scholar 

  • Vorpahl F, Strobel M, Jonkman JM, Larsen TJ, Passon P, Nichols J (2014) Verification of aero-elastic offshore wind turbine design codes under IEA wind task XXIII. Wind Energy 17(4):519–547

    Article  Google Scholar 

  • Wei K, Arwade SR, Myers AT (2014) Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading. Eng Struct 79:58–69

    Article  Google Scholar 

  • Wen B, Tian X, Dong X, Peng Z, Zhang W (2018) On the power coefficient overshoot of an offshore floating wind turbine in surge oscillations. Wind Energy 21(11):1076–1091

    Article  Google Scholar 

  • Xing Y, Moan T (2013) Multi-body modelling and analysis of a planet carrier in a wind turbine gearbox. Wind Energy 16(7):1067–1089

    Article  Google Scholar 

  • Yang L, Hals J, Moan T (2010) Analysis of dynamic effects relevant for the wear damage in hydraulic machines for wave energy conversion. Ocean Eng 37(13):1089–1102

    Article  Google Scholar 

  • Yang L, Jiang Z, Gao Z, Moan T (2015) Dynamic analysis of a floating wind turbine with a hydraulic transmission system. In: Proceedings of the twenty-fifth international ocean and polar engineering conference, Hawaii, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Jiang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jiang, Z., Shi, W. (2020). Analysis of Renewable Energy Devices. In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_192-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_192-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics