Skip to main content

Autonomous Underwater Vehicle (AUV)

  • Living reference work entry
  • First Online:
Encyclopedia of Ocean Engineering
  • 258 Accesses

Synonyms

Autonomous underwater vehicle (AUV); Doppler velocity log (DVL); Long baseline (LBL); Ultrashort baseline (USBL); Unmanned underwater vehicle (UUV)

Definition

Autonomous underwater vehicles (AUVs) are unmanned underwater vehicles (UUVs) without tethers that are powered by onboard energy sources. They are intended to accomplish pre-defined tasks with little or no human supervision. They can be fully or largely autonomous, communicating intermittently with operators using acoustic or radio links.

Gliders form a distinct subclass of AUVs. They move through the water column, translating the vertical forces of positive or negative buoyancy into a horizontal motion using wings. Whereas propeller-driven AUVs have endurance measured in hours or days (tens or hundreds of miles), glider endurance is measured in weeks or months (thousands of miles).

Brief History of AUV Development

AUV development began in the late 1950s (Blidberg 2001; Von Alt 2003). A few AUVs were built mostly to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen B, Stokey R, Austin T, Forrester N, Goldsborough R, Purcell M, von Alt C (1997) REMUS: a small, low cost AUV; system description, field trials and performance results. In: MTS/IEEE Oceans’97, pp 994–1000

    Google Scholar 

  • Blidberg DR (2001) The Development of autonomous underwater vehicles (AUV); a brief summary. In: IEEE international conference on robotics and automation ’01, Seoul

    Google Scholar 

  • Bowen AD, Yoerger DR, Taylor C, et al. (2008) The Nereus hybrid underwater robotic vehicle for global ocean science operations to 11,000 m depth. In: IEEE Oceans 2008, pp 1–10

    Google Scholar 

  • Bowen AD, Yoerger DR, Taylor C, McCabe R, Howland J, Gomez-Ibanez D, Kinsey JC, Heintz M, McDonald G, Peters DB, Bailey J, Bors E, Shank T, Whitcomb LL, Martin SC, Webster SE, Jakuba MV, Fletcher B, Young C, Buescher J, Fryer P, Hulme S (2009) Field trials of the Nereus hybrid underwater robotic vehicle in the challenger deep of the Mariana trench. Oceans 10

    Google Scholar 

  • Brierley AS, Fernandes PG, Brandon MA, Armstromg F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295(5561):1890–1892

    Article  Google Scholar 

  • Butler B, den Hertog V (1993) Theseus: a cable-laying AUV. In: Proceedings of IEEE Oceans’93, pp I210–I213

    Google Scholar 

  • Button RW, Kamp J, Curtin TB, Dryden J (2009) A survey of missions for unmanned undersea vehicles. Rand National Defense Research Inst Santa Monica Ca, Ft. Belvoir

    Google Scholar 

  • Chitre M, Shahabudeen S, Stojanovic M (2008) Underwater acoustic communications and networking: recent advances and future challenges. Mar Technol Soc J 42(1):103–116

    Article  Google Scholar 

  • Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM (2001) Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Ocean Eng 26(4):424–436

    Article  Google Scholar 

  • Francois R, Nodland W (1972) Unmanned Arctic Research Submersible (UARS) system development and test report. Applied Physics Laboratory, University of Washington, Seattle

    Google Scholar 

  • German CR, Yoerger DR, Jakuba M, Shank TM, Langmuir CH, Nakamura K (2008) Hydrothermal exploration with the autonomous benthic explorer. Deep-Sea Res I Oceanogr Res Pap 55(2):203–219

    Article  Google Scholar 

  • Healey AJ, Lienard D (1993) Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J Ocean Eng 18(3):327–339

    Article  Google Scholar 

  • Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y (2012) Tethys-class long range AUVs-extending the endurance of propeller-driven cruising AUVs from days to weeks. In: 2012 IEEE/OES autonomous underwater vehicles (AUV), pp 1–8

    Google Scholar 

  • Kinsey JC, Whitcomb LL (2004) Preliminary field experience with the DVLNAV integrated navigation system for oceanographic submersibles. Control Eng Pract 12(12):1541–1549

    Article  Google Scholar 

  • Kinsey JC, Yoerger DR, Jakuba MV, Camilli R, Fisher CR, German CR (2011) Assessing the deepwater horizon oil spill with the sentry autonomous underwater vehicle. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 261–267

    Google Scholar 

  • Marthiniussen R, Vestgard K, Klepaker RA, Storkersen N (2004) HUGIN-AUV concept and operational experiences to date. In: Oceans’ 04 MTS/IEEE Techno-Ocean’04, vol 2, pp 846–850

    Google Scholar 

  • McMahon J, Plaku E (2016) Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments. IEEE J Ocean Eng 41(4):893–912

    Article  Google Scholar 

  • Nakamura Y, Savant S (1992) Nonlinear tracking control of autonomous underwater vehicles. In: Proceedings 1992 IEEE international conference on robotics and automation (Cat. No.92CH3140-1), vol 3, pp A4–A9

    Google Scholar 

  • Nodland W, Ewart T, Bendiner W, Miller J, Aagaard E (1981) Spurv II-an unmanned, free-swimming submersible developed for oceanographic research. In: IEEE Oceans 81, pp 92–98

    Google Scholar 

  • Panish R, Taylor M, IEEE (2011) Achieving high navigation accuracy using inertial navigation Systems in Autonomous Underwater Vehicles. In: 2011 IEEE – Oceans Spain, Oceans-IEEE. IEEE, New York

    Google Scholar 

  • Sherman J, Davis RE, Owens W, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Ocean Eng 26(4):437–446

    Article  Google Scholar 

  • Storkersen N, Kristensen J, Indreeide A, Seim J, Glancy T (1998) Hugin – UUV for seabed surveying. Sea Technol 39(2):99–104

    Google Scholar 

  • Stutters L, Liu HH, Tillman C, Brown DJ (2008) Navigation technologies for autonomous underwater vehicles. IEEE Trans Syst Man Cybern Part C Appl Rev 38(4):581–589

    Article  Google Scholar 

  • Ura T, Obara T, Nagahashi K, Kim K, Oyabu Y, Sakamaki T, Asada A, Koyama H, IEEE (2004) Introduction to an AUV “r2D4” and its Kuroshima Knoll survey mission. IEEE, New York

    Book  Google Scholar 

  • Von Alt C (2003) Autonomous underwater vehicles. In: autonomous underwater Lagrangian platforms and sensors workshop, vol 3

    Google Scholar 

  • Wadhams P, Wilkinson JP, McPhail S (2006) A new view of the underside of Arctic Sea ice. Geophys Res Lett 33(4):L04501

    Article  Google Scholar 

  • Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: An underwater glider propelled by environmental energy. IEEE J Ocean Eng 26(4):447–452

    Article  Google Scholar 

  • Widditsch HR (1973) SPURV-the first decade, Washington Univ Seattle Applied Physics Lab, No. APL-UW-7215

    Google Scholar 

  • Yoerger DR, Slotine JE (1985) Robust trajectory control of underwater vehicles. IEEE J Ocean Eng OE-10(4):462–470

    Article  Google Scholar 

  • Yoerger DR, Bradley AM, Walden BB (1991) The autonomous benthic explorer (ABE): an AUV optimized for deep seafloor studies. In: Proceedings of the seventh international symposium on unmanned untethered submersible technology (UUST91), pp 60–70

    Google Scholar 

  • Yoerger DR, Bradley AM, Martin SC, Whitcomb LL (2006) The sentry autonomous underwater vehicle: field trial results and future capabilities. In: AGU fall meeting abstracts

    Google Scholar 

  • Yuh J (2000) Design and control of autonomous underwater robots: a survey. Auton Robot 8(1):7–24

    Article  Google Scholar 

  • Zhang Y, McEwen RS, Ryan JP, Bellingham JG (2010) Design and tests of an adaptive triggering method for capturing peak samples in a thin phytoplankton layer by an autonomous underwater vehicle. IEEE J Ocean Eng 35(4):785–796

    Article  Google Scholar 

  • Zhang Y, Godin MA, Bellingham JG, Ryan JP (2012) Using an autonomous underwater vehicle to track a coastal upwelling front. IEEE J Ocean Eng 37(3):338–347

    Article  Google Scholar 

  • Zhao S, Yuh J, Choi SK, IEEE (2004) Adaptive DOB conltrol for AUVs. In: 2004 IEEE international conference on robotics and automation, vols 1–5, Proceedings, IEEE international conference on robotics and automation ICRA. IEEE, New York, pp 4899–4904

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Feng .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Feng, Z. (2019). Autonomous Underwater Vehicle (AUV). In: Cui, W., Fu, S., Hu, Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6963-5_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6963-5_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6963-5

  • Online ISBN: 978-981-10-6963-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics