Skip to main content

Advertisement

Log in

Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery

  • REVIEW ARTICLE
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aasen IM, Ertesvåg H, Heggeset TM, Liu B, Brautaset T, Vadstein O, Ellingsen TE (2016) Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100(10):4309–4321

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Wahab MA, El-Samawaty AERMA, Elgorban AM, Bahkali AH (2021) Thraustochytrids from the Red Sea mangroves in Saudi Arabia and their abilities to produce docosahexaenoic acid. Bot Mar 64(6):489–501

    Article  CAS  Google Scholar 

  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14

    Article  CAS  PubMed  Google Scholar 

  • Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK, Dhama K (2019) Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals 9(8):573

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali MK, Sen B, He Y, Bai M, Wang G (2022) Media supplementation with mannitol and biotin enhances squalene production of Thraustochytrium ATCC 26185 through increased glucose uptake and antioxidative mechanisms. Molecules 27(8):2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amjad Khan W, Chun-Mei H, Khan N, Iqbal A, Lyu SW, Shah F (2017) Bioengineered plants can be a useful source of omega-3 fatty acids. BioMed Res Int 2017:7348919

    Article  PubMed  PubMed Central  Google Scholar 

  • Arballo J, Amengual J, Erdman Jr JW. Lycopene (2021) A critical review of digestion, absorption, metabolism, and excretion. Antioxidants 10(3):342

  • Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM (2019) Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environ Sci Pollut Res 26(17):16952–16973

    Article  CAS  Google Scholar 

  • Bagul VP, Annapurna US (2021a) Isolation and characterization of docosahexaenoic acid-producing novel strain Aurantiochytrium sp. ICTFD5: a sterol with vitamin d-cholecalciferol, and cellulase and lipase producing thraustochytrid. Bioresour Technol 14:100688

    CAS  Google Scholar 

  • Bagul VP, Annapurna US (2021b) Isolation of fast-growing thraustochytrids and seasonal variation on the fatty acid composition of thraustochytrids from mangrove regions of Navi Mumbai. India J Environ Manage 290:112597

    CAS  PubMed  Google Scholar 

  • Bai M, Sen B, Wen S, Ye H, He Y, Zhang X, Wang G (2022) Culturable diversity of thraustochytrids from coastal waters of Qingdao and their fatty acids. Mar Drug 20(4):229

    Article  CAS  Google Scholar 

  • Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G (2018) The effect of lutein on eye and extra-eye health. Nutrient 10(9):1321

    Article  Google Scholar 

  • Byreddy AR, Gupta A, Barrow CJ, Puri M (2015) Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar Drugs 13(8):5111–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caseiro M, Ascenso A, Costa A, Creagh-Flynn J, Johnson M, Simões S (2020) Lycopene in human health. Lwt 127:109323

    Article  CAS  Google Scholar 

  • Chauhan AS, Chen CW, Singhania RR, Tiwari M, Sartale RG, Dong CD, Patel AK (2022) Valorizations of marigold waste for high-value products and their commercial importance: a comprehensive review. Resources 11:91

    Article  Google Scholar 

  • Chauhan AS, Patel AK, Chen CW, Chang JS, Michaud P, Dong CD, Singhania RR (2023) Enhanced production of high-value polyunsaturated fatty acids (PUFA) from potential thraustochytrid Aurantiochytrium sp. Bioresour Technol 370:128536

    Article  CAS  PubMed  Google Scholar 

  • Cholewski M, Tomczykowa M, Tomczyk M (2018) A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients 10(11):1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Colonia BSO, de Melo Pereira GV, Soccol CR (2020) Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: a review and patent landscape. Trends Food Sci Technol 99:244–256

    Article  Google Scholar 

  • Colonia BSO, de Melo Pereira GV, Rodrigues FM, Miranda Muynarsk EDS, Vale ADS, Carvalho JCD, Soccol VT, Penha RDO, Soccol RC (2021) Integrating metagenetics and high-throughput screening for bioprospecting marine thraustochytrids producers of long-chain polyunsaturated fatty acids. Bioresour Technol 333:125176

    Article  CAS  PubMed  Google Scholar 

  • Coronel J, Pinos I, Amengual J (2019) β-carotene in obesity research: technical considerations and current status of the field. Nutrients 11(4):842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Cigliano RA, Sanseverino W, Kuntz M, Jouhet J (2018) Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Res 35:125–141

    Article  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42(4):396–405

    Article  Google Scholar 

  • Donoso A, González-Durán J, Muñoz AA, González PA, Agurto-Munoz C (2021) Therapeutic uses of natural astaxanthin: an evidence-based review focused on human clinical trials. Pharmacol Res 166:105479

    Article  CAS  PubMed  Google Scholar 

  • Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H (2021) Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 48:107725

    Article  CAS  PubMed  Google Scholar 

  • Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H (2019) De novo synthesis of astaxanthin: from organisms to genes. Trends Food Sci Technol 92:162–171

    Article  CAS  Google Scholar 

  • Fortune business insights (2022) https://www.fortunebusinessinsights.com/industry-reports/aquafeed-market-100698. Last accessed 08/03/2023

  • Gupta A, Barrow CJ, Puri M (2022) Multiproduct biorefinery from marine thraustochytrids towards a circular bioeconomy. Trends Biotechnol 40(4):448–62

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Park K (2020) Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: a systematic review and meta-analysis. Clin Nutr 39(3):765–773

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Zhai R, Xu Z, Wen Z (2019) Production of high-value polyunsaturated fatty acids using microbial cultures. Microbial lipid production. Humana, New York, pp 229–248

    Chapter  Google Scholar 

  • Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L (2022) Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 21(1):1–12

    Article  Google Scholar 

  • Kalidasan K, Vinithkumar NV, Peter DM, Dharani G, Dufossé L (2021) Thraustochytrids of mangrove habitats from Andaman Islands: species diversity, PUFA profiles and biotechnological potential. Mar Drug 19(10):571

    Article  CAS  Google Scholar 

  • Khumrangsee K, Charoenrat T, Praiboon J, Chittapun S (2022) Development of a fed-batch fermentation with stepwise aeration to enhance docosahexaenoic acid and carotenoid content in Aurantiochytrium sp. FIKU018. J. Appl. Phycol. 34(3):1243–53

    Article  CAS  Google Scholar 

  • Kikukawa H, Watanabe K, Kishino S, Takeuchi M, Ando A, Izumi Y, Sakuradani E (2022) Recent trends in the field of lipid engineering. J Biosci Bioeng 133(5):405–413

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR (2020) Bioengineering of microalgae: recent advances, perspectives, and regulatory challenges for industrial application. Front Bioeng Biotechnol 8:914. https://doi.org/10.3389/fbioe.2020.00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee-Chang KJ, Taylor MC, Drummond G, Mulder RJ, Mansour MP, Brock M, Nichols PD (2021) Docosahexaenoic acid is naturally concentrated at the sn-2 position in triacylglycerols of the Australian thraustochytrid Aurantiochytrium sp. Strain TC 20. Mar Drug 19(7):382

    Article  CAS  Google Scholar 

  • Leyton A, Shene C, Chisti Y, Asenjo JA (2022) Production of carotenoids and phospholipids by Thraustochytrium sp in Batch and repeated-batch culture. Mar Drug 20:416

    Article  CAS  Google Scholar 

  • Li C, Swofford CA, Sinskey AJ (2020) Modular engineering for microbial production of carotenoids. Metab Eng Commun 10:e00118

    Article  PubMed  Google Scholar 

  • Li N, Wu X, Zhuang W, Xia L, Chen Y, Wu C, Rao Z, Du L, Zhao R, Yi M, Wan Q, Zhou Y (2021) Tomato and lycopene and multiple health outcomes: umbrella review. Food Chem 343:128396

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Xie X, Yuan B, Fu J, Liu L, Tian H, Chen T, He D (2018) Optimization of enzymatic cell disruption for improving lipid extraction from Schizochytrium sp. through response surface methodology. J Oleo Sci 67(2):215–24

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang F, Deng L, Xu P (2020) Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica. Bioresour Technol 317:123991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PY, Li G, Lin CB, Wu JJ, Jiang S, Huang FH, Wan X (2022) Modulating DHA-producing Schizochytrium sp. toward astaxanthin biosynthesis via a seamless genome editing system. ACS Synth Biol 11(12):4171–4183

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Grande AM, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G, Martínez-Ayala AL (2018) Plant sources, extraction methods, and uses of squalene. Int J Agro 2018:1829160

    Google Scholar 

  • Ma W, Wang YZ, Nong FT, Du F, Xu YS, Huang PW, Sun XM (2021) An emerging simple and effective approach to increase the productivity of thraustochytrids microbial lipids by regulating glycolysis process and triacylglycerols decomposition. Biotechnol Biofuel 14(1):1–14

    Article  Google Scholar 

  • Miranda AF, Tran TL, Abramov T, Jehalee F, Miglani M, Liu Z, Rochfort S, Gupta A, Cheirsilp B, Adhikari B, Puri M (2020) Marine protists and Rhodotorula yeast as bio-convertors of marine waste into nutrient-rich deposits for mangrove ecosystems. Protist 171(3):125738

    Article  CAS  PubMed  Google Scholar 

  • Mirmehrabi M, Brar SK (2020) A novel process for isolation and purification of polyunsaturated fatty acids from a thraustochytrid. Algal Res 1(46):101806

    Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Van Thang D, Ueda M, Honda D (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    Article  CAS  Google Scholar 

  • Park H, Kwak M, Seo JW, Ju JH, Heo SY, Park SM, Hong WK (2018) Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst Eng 41(9):1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P (2020) An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms 8(3):434. https://doi.org/10.3390/microorganisms8030434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A, Karageorgou D, Katapodis P, Sharma A, Rova U, Christakopoulos P, Matsakas L (2021) Bioprospecting of thraustochytrids for omega-3 fatty acids: a sustainable approach to reduce dependency on animal sources. Trends Food Sci Technol 115(2021):433–444

    Article  CAS  Google Scholar 

  • Patel A, Bettiga M, Rova U, Christakopoulos P, Matsakas L (2022) Microbial genetic engineering approach to replace shark livering for squalene. Trend Biotechnol 40(10):1261–1273

    Article  CAS  Google Scholar 

  • Patel AK, Albarico FPJB, Perumal PK, Vadrale AP et al (2022a) Algae as an emerging source of bioactive pigments. Bioresour Technol 351:126910

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, Huang CY, Dong CD, Singhania RR (2022b) Recent advancements in astaxanthin production from microalgae: a review. Bioresour Technol 26:128030

    Article  Google Scholar 

  • Patel AK, Chauhan AS, Kumar P, Michaud P, Gupta VK, Chang JS, Chen CW, Dong CD, Singhania RR (2022c) Emerging prospects of microbial production of omega fatty acids: Recent updates. Bioresour Technol 360:127534

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Vadrale AP, Tseng YS, Chen CW, Dong CD, Singhania RR (2022c) Bioprospecting of marine microalgae from Kaohsiung seacoast for lutein and lipid production. Bioresour Technol 351:126928

    Article  CAS  PubMed  Google Scholar 

  • Pätzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D (2019) Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol 37(9):943–59

    Article  PubMed  Google Scholar 

  • Quilodrán B, Cortinez G, Bravo A, Silva D (2020) Characterization and comparison of lipid and PUFA production by native thraustochytrid strains using complex carbon sources. Heliyon 6(11):e05404

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F (2021) Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: advances and outlook. Bioresour Technol 340:125736

    Article  CAS  PubMed  Google Scholar 

  • Rollin S, Gupta A, Puri M (2022) Optimising pineapple filtrate assisted cell disruption of wet thraustochytrid biomass for improved lipid extraction. J Clean Prod 378:134393

    Article  CAS  Google Scholar 

  • Santos HO, Price JC, Bueno AA (2020) Beyond fish oil supplementation: the effects of alternative plant sources of omega-3 polyunsaturated fatty acids upon lipid indexes and cardiometabolic biomarkers-an overview. Nutrients 12(10):3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Ishihara K, Shimizu T, Aoya J, Yoshida M (2018) Laboratory scale culture of early-stage kuruma shrimp Marsupenaeus japonicus larvae fed on thraustochytrids Aurantiochytrium and Parietichytrium. J Shellfish Res 37(3):571–579

    Article  Google Scholar 

  • Senbagalakshmi P, Muthukrishnan S, Jebasingh T, Kumar TS, Rao M, Kumar TS, Rao MV (2019) Squalene, biosynthesis and its role in production of bioactive compounds, a proper scientific challenge—a review. J Emerg Technol Innov Res 6:505–526

    Google Scholar 

  • Shah AM, Yang W, Mohamed H, Zhang Y, Song Y (2022) Microbes: a hidden treasure of polyunsaturated fatty acids. Front Nutr 17(9):827837

    Article  Google Scholar 

  • Song Y, Zhu X, Wang B, Ibrar M, Hu Z, Li S, Yang X (2022) Overexpression of the KAS III-like gene YxwZ3 increases carotenoids production in Aurantiochytrium sp. SZU445. Ind Crop Prod. 187:115435

    Article  CAS  Google Scholar 

  • Thom LT, Ha NC, Hien HTM, Thu NTH, Loan VT, Dan NT, Hai TB, Hong DD (2022a) Biological characteristics of the heterotrophic marine microalgae Thraustochytrium pachydermum TSL10 isolated from the sea area of Truong Sa Archipelago. Vietnam Viet J Biotechnol 20(3):545–563

    Article  Google Scholar 

  • Thom LT, Ha NC, Hong DD (2022b) Optimization of cultural conditions for omega 3–6 fatty acids and carotenoids production by Schizochytrium mangrovei TB17. Acad J Biol 44(1):11–28

    Article  Google Scholar 

  • Thomas BJ, Plourde M, Stark KD, Jones PJ, Lin YH (2018) Best practices for the design, laboratory analysis, and reporting of trials involving fatty acids. The Am J Clin Nutr 108(2):211–227

    Article  Google Scholar 

  • Tran TLN, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A (2020) The nutritional and pharmacological potential of new Australian thraustochytrids isolated from mangrove sediments. Mar Drug 18(3):151

    Article  CAS  Google Scholar 

  • Johra JF, Bepari AK, Bristy AT, Reza HM (2020) A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants 9(11):1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Arafiles KHV, Higashi R, Okamura Y, Tajima T, Matsumura Y, Nakashimada Y, Matsuyama K, Aki T (2018) Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information. J. Oleo Sci. 67(5):571–578

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Parrish CC, Guerra NI, Armenta RE, Colombo SM (2021) Extracted microbial oil from a novel Schizochytrium sp. (T18) as a sustainable high DHA source for Atlantic salmon feed: impacts on growth and tissue lipids. Aquaculture. 15(534):736249

    Article  Google Scholar 

  • Xie Y, Sen B, Wang G (2017) Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour Technol 244:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Yin FW, Zhan CT, Huang J, Sun XL, Yin LF, Zheng WL, Luo X, Zhang YY, Fu YQ (2022) Efficient co-production of docosahexaenoic acid oil and carotenoids in Aurantiochytrium sp. using a light intensity gradient strategy. Appl Biochem Biotechnol 195(1):623–638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge National Science and Technology Council, Taiwan for this study

Funding

The Project is funded by AKP is grateful to NSTC, Taiwan for funding support (Ref. No. NSTC 111-2222-E-992-006).

Author information

Authors and Affiliations

Authors

Contributions

ASC: writing-original draft, literature review; C-WC: supervision, draft preparation; HY: literature review, draft preparation; BP: literature review, draft preparation; supervision.; RRS: supervision, writing—review, and editing.; C-DD: supervision, writing—review and editing. AKP: supervision, writing—review and editing.

Corresponding authors

Correspondence to Cheng-Di Dong or Anil Kumar Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have given their consent for the publication of review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.S., Chen, CW., Yadav, H. et al. Assessment of thraustochytrids potential for carotenoids, terpenoids and polyunsaturated fatty acids biorefinery. J Food Sci Technol 60, 2955–2967 (2023). https://doi.org/10.1007/s13197-023-05740-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-023-05740-0

Keywords

Navigation