Turbulence, Transport and Reconnection

  • Nobumitsu YokoiEmail author
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 591)


Turbulence is a multi-scale phenomenon that is ubiquitous in our universe. Strong nonlinearity in a system enhances coupling among modes, leading to a very broad spectrum in the spatial domain which contains an energy cascade and dissipation. We have to deal with all the scales of motions from the largest energy-containing scale to the smallest dissipation scales simultaneously. One of the subjects of this chapter is to show how to treat nonlinearity beyond the quasi-linear approximation. Turbulence of practical interest is almost always inhomogeneous and accompanied by non-uniform global structures, such as density stratification, velocity shear, rotation and magnetic field. Therefore, another subject of this chapter is to present how to tackle strongly nonlinear and inhomogeneous magnetohydrodynamic turbulence. Turbulence modelling provides a strong tool for studying realistic turbulent flow. A way to construct a turbulence model on the basis of the fundamental equations, beyond the heuristic ad hoc modelling, is shown. With these preparations, the magnetic reconnection problem is addressed from the viewpoint of turbulent transport.


  1. O.G. Bakunin, Turbulence and Diffusion: Scaling Versus Equations (Springer, Berlin, 2008)zbMATHGoogle Scholar
  2. G.K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1953)zbMATHGoogle Scholar
  3. A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Fast reconnection in high Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009)CrossRefGoogle Scholar
  4. P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  5. J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech. 41, 453–480 (1970)CrossRefGoogle Scholar
  6. G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astron. J. 743, 51 (2011)CrossRefGoogle Scholar
  7. U. Frisch, Turbulence, the Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)Google Scholar
  8. H.P. Furth, J. Killeen, M. Rosenbluth, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963)CrossRefGoogle Scholar
  9. M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefGoogle Scholar
  10. P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astron. J. 438, 763–775 (1995)CrossRefGoogle Scholar
  11. Z.B. Guo, P.H. Diamond, X.G. Wang, Magnetic reconnection, helicity dynamics, and hyper-diffusion. Astron. J. 757, 173-1–15 (2012)CrossRefGoogle Scholar
  12. F. Hamba, H. Sato, Turbulent transport coefficients and residual energy in mean-field dynamo theory. Phys. Plasmas 15, 022302-1–12 (2008)CrossRefGoogle Scholar
  13. K. Higashimori, N. Yokoi, M. Hoshino, Explosive turbulent magnetic reconnection. Phys. Rev. Lett. 110, 255001-1–5 (2013)Google Scholar
  14. J.O. Hinze, Turbulence, 2nd edn. (McGraw-Hill Book, New York City, 1975)Google Scholar
  15. Y.-M. Huang, L. Comisso, A. Bhattacharjee, Plasmoid instability in evolving current sheets and onset of fast reconnection. Astron. J. 849, 75 (2017)CrossRefGoogle Scholar
  16. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)MathSciNetGoogle Scholar
  17. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82–85 (1962)MathSciNetCrossRefGoogle Scholar
  18. G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 19, 297–314 (2012)CrossRefGoogle Scholar
  19. R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497–543 (1959)MathSciNetCrossRefGoogle Scholar
  20. R.H. Kraichnan, Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575–598 (1965)MathSciNetCrossRefGoogle Scholar
  21. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)CrossRefGoogle Scholar
  22. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. (Springer, Berlin, 1991)CrossRefGoogle Scholar
  23. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edn., Chap. 2 (Butterworth-Heinemann, Oxford, 1987), p. 44Google Scholar
  24. B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic, New York, 1972)zbMATHGoogle Scholar
  25. B.E. Launder, G. Reece, W. Rodi, Progress of the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)CrossRefGoogle Scholar
  26. A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)CrossRefGoogle Scholar
  27. M. Lesieur, Turbulence in Fluids, 4th edn. (Springer, Berlin, 2008)CrossRefGoogle Scholar
  28. D.C. Leslie, Developments in the Theory of Turbulence (Clarendon Press, Oxford, 1973)zbMATHGoogle Scholar
  29. N.F Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007)CrossRefGoogle Scholar
  30. N.F Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, L146–L150 (2009)CrossRefGoogle Scholar
  31. W.H. Matthaeus, S.L. Lamkin, Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Plasmas 28, 303–307 (1985)Google Scholar
  32. W.D. McComb, The Physics of Fluid Turbulence (Clarendon Press, Oxford, 1990)zbMATHGoogle Scholar
  33. W.D. McComb, Renormalization Methods: A Guide for Beginners (Clarendon Press, Oxford, 2004)zbMATHGoogle Scholar
  34. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (The MIT Press, Cambridge, 1975)Google Scholar
  35. N. Narukage, K. Shibata, Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122–1134 (2006)CrossRefGoogle Scholar
  36. H. Oertel, Prandtl’s Essentials of Fluid Mechanics, Chap. 7 (Springer, Berlin, 2004), p. 326CrossRefGoogle Scholar
  37. S.A. Orszag, Analytical theories of turbulence. J. Fluid Mech. 41, 363–386 (1970)CrossRefGoogle Scholar
  38. E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Fluid Mech. 62, 509–520 (1957)Google Scholar
  39. E.R. Priest, Magnetohydrodynamics of the Sun (Cambridge University Press, Cambridge, 2014)Google Scholar
  40. O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)CrossRefGoogle Scholar
  41. L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922), p. 66zbMATHGoogle Scholar
  42. L.F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. Ser. A 110, 709–737 (1929)CrossRefGoogle Scholar
  43. N. Rott, Note on the history of the Reynolds number. Annu. Rev. Fluid Mech. 22, 1–11 (1990)MathSciNetCrossRefGoogle Scholar
  44. P. Sagaut, C. Cambon, Homogeneous Turbulence Dynamics, Chap. 2 (Cambridge University Press, Cambridge, 2008), p. 10CrossRefGoogle Scholar
  45. H. Schlichting, Boundary-Layer Theory, Chap. 19 (McGraw-Hill Book, New York City, 1979), p. 579Google Scholar
  46. K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001)CrossRefGoogle Scholar
  47. T. Shibayama, K. Kusano, T. Miyoshi, T. Nakabou, G. Vekstein, Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks. Phys. Plasmas 22, 100706 (2015)CrossRefGoogle Scholar
  48. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  49. P.A. Sweet, The neutral point theory of solar flares, in IAU Symposium No. 6 Electromagnetic Phenomena in Cosmical Physics (1958), pp. 123–134Google Scholar
  50. H. Tennekes, J.L. Lumley, A First Course in Turbulence (The MIT Press, Cambridge, 1972)zbMATHGoogle Scholar
  51. F. Widmer, J. Büchner, N. Yokoi, Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics. Phys. Plasmas 23, 042311 (2016)CrossRefGoogle Scholar
  52. F. Widmer, J. Büchner, N. Yokoi, Characterizing plasmoid reconnection by turbulence dynamics. Phys. Plasmas 23, 092304 (2016)CrossRefGoogle Scholar
  53. F. Widmer, J. Büchner, N. Yokoi, Analysis of fast turbulent reconnection with self-consistent determination of turbulence timescale. Phys. Plasmas (submitted, 2019)Google Scholar
  54. H.W. Wyld Jr., Formulation of the theory of turbulence in an incompressible fluid. Ann. Phys. 14, 143–165 (1961)MathSciNetCrossRefGoogle Scholar
  55. N. Yokoi, Modeling of the turbulent magnetohydrodynamic residual-energy equation using a statistical theory. Phys. Plasmas 13, 062306 (2006)MathSciNetCrossRefGoogle Scholar
  56. N. Yokoi, Modeling the turbulent cross-helicity evolution: production, dissipation, and transport rates. J. Turbul. 12, N27-1–33 (2011)MathSciNetCrossRefGoogle Scholar
  57. N. Yokoi, Cross helicity and related dynamo. Geophys. Astrophys. Fluid Dyn. 107, 114–184 (2013)MathSciNetCrossRefGoogle Scholar
  58. N. Yokoi, Electromotive force in strongly compressible magnetohydrodynamic turbulence. J Plasma Phys. 84, 735840501 (2018)CrossRefGoogle Scholar
  59. N. Yokoi, Mass and internal-energy transports in strongly compressible magnetohydrodynamic turbulence. J. Plasma Phys. 84, 775840603 (2018)CrossRefGoogle Scholar
  60. N. Yokoi, A. Brandenburg, Large-scale flow generation by inhomogeneous helicity. Phys. Rev. E 93, 033125 (2016)MathSciNetCrossRefGoogle Scholar
  61. N. Yokoi, F. Hamba, An application of the turbulent magnetohydrodynamic residual-energy equation model to the solar wind. Phys. Plasmas 14, 112904 (2007)CrossRefGoogle Scholar
  62. N. Yokoi, M. Hoshino, Flow-turbulence interaction in magnetic reconnection. Phys. Plasmas 18, 111208 (2011)CrossRefGoogle Scholar
  63. N. Yokoi, A. Yoshizawa, Statistical analysis of the effects of helicity in inhomogeneous turbulence. Phys. Fluids A 5, 464–477 (1993)MathSciNetCrossRefGoogle Scholar
  64. N. Yokoi, A. Yoshizawa, Subgrid-scale model with structural effects incorporated through the helicity. Prog. Turbul. VII Springer Proc. Phys. 196, 115–121 (2017)MathSciNetCrossRefGoogle Scholar
  65. N. Yokoi, R. Rubinstein, A. Yoshizawa, F. Hamba, A turbulence model for magnetohydrodynamic plasmas. J. Turbul. 9, N37-1–25 (2008)MathSciNetCrossRefGoogle Scholar
  66. N. Yokoi, K. Higashimori, M. Hoshino, Transport enhancement and suppression in turbulent magnetic reconnection: a self-consistent turbulence model. Phys. Plasmas 20, 122310-1–17 (2013)CrossRefGoogle Scholar
  67. A. Yoshizawa, Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27, 1377–1387 (1984)CrossRefGoogle Scholar
  68. A. Yoshizawa, Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990)CrossRefGoogle Scholar
  69. A. Yoshizawa, Turbulent magnetohydrodynamic dynamo: modeling of the turbulent residual-helicity equation. J. Phys. Soc. Jpn. 65, 124–132 (1996)CrossRefGoogle Scholar
  70. A. Yoshizawa, Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modelling and Statistical Theory (Kluwer Academic Publishers, Dordrecht, 1998)CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2020

Authors and Affiliations

  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyoJapan
  2. 2.Nordic Institute for Theoretical Physics (NORDITA)StockholmSweden

Personalised recommendations