Skip to main content

The Classification of Heartbeat PCG Signals via Transfer Learning

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

Cardiovascular auscultation is a process of listening to the sound of a heartbeat to pick up on any abnormalities. One of these abnormalities is heart murmurs, which are the result of blood turbulence, in or near the heart. Heart murmurs can be innocent, or they can indicate the existence of very serious diseases. Normally the process is performed with a stethoscope, by a medical professional, where murmurs are identified by the subtle difference in timing and pitch from a normal heartbeat. These professionals, however, are not always available; hence, the need for the automation of this process rises. This paper aims at testing the performance of pre-trained CNN models at the classification of heartbeats. A database of phonocardiogram (PCG) heartbeat recordings, under the name of the PASCAL CHSC database was used to train four pre-trained models: VGG16, VGG19, MobileNet, and inceptionV3. The data was processed, and the features were extracted using Spectrogram signal representation. They were then split into training and testing data, and the results were compared using the metrics of accuracy and loss. The classification accuracies of the VGG16, VGG19, MobileNet, and inceptionV3 models are 80.25%, 85.19%, 72.84% and 54.32%, respectively. The findings of the paper indicate that the use of different transfer learning models can, to a certain extent, enhance the overall accuracy at detecting the murmurs of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chizner MA (2008) Cardiac auscultation: rediscovering the lost art. Curr Probl Cardiol. https://doi.org/10.1016/j.cpcardiol.2008.03.003

    Article  Google Scholar 

  2. The gale encyclopedia of children’s health: infancy through adolescence. Choice Rev Online (2012). https://doi.org/https://doi.org/10.5860/choice.49-3617

  3. American Hearth Association (2014) What is cardiovascular disease

    Google Scholar 

  4. Goodman G (2019) Cardiovascular techniques and technology. Clinical Engineering Handbook

    Google Scholar 

  5. Ahmad MS, Mir J, Ullah MO, Shahid MLUR, Syed MA (2019) An efficient heart murmur recognition and cardiovascular disorders classification system. Australas Phys Eng Sci Med. https://doi.org/10.1007/s13246-019-00778-x

    Article  Google Scholar 

  6. Lubis C, Gondawijaya F (2019) Heart sound diagnose system with BFCC, MFCC, and backpropagation neural network. In: IOP conference series: materials science and engineering

    Google Scholar 

  7. Rashid M, Sulaiman N, Majeed APP, Musa RM, Nasir AFA, Bari BS, Khatun S (2020) Current status, challenges and possible solutions of EEG based brain-computer interface: a comprehensive review. Front Neurorobot 14:25

    Article  Google Scholar 

  8. Shapiee MNA, Ibrahim MAR, Mohd Razman MA, Abdullah MA, Musa RM, Hassan MHA, Majeed APPA (2020) The classification of skateboarding trick manoeuvres through the integration of image processing techniques and machine learning, 1st edn. In: Nasir ANK, Ahmad MA, Najib MS, Wahab YA, Othman NA, Ghani NA, Irawan A, Khatun S, Ismail RMTR, Saari MM, Daud MR, Faudzi AAM (eds) InECCE2019 proceedings of the 5th international conference on electrical, control and computer engineering, Kuantan, Pahang, Malaysia, 29th July 2019. Springer Singapore

    Google Scholar 

  9. Fukae J, Isobe M, Hattori T, Fujieda Y, Kono M, Abe N, Kitano A, Narita A, Henmi M, Sakamoto F, Aoki Y, Ito T, Mitsuzaki A, Matsuhashi M, Shimizu M, Tanimura K, Sutherland K, Kamishima T, Atsumi T, Koike T (2020) Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis. Sci Rep. https://doi.org/10.1038/s41598-020-62634-3

    Article  Google Scholar 

  10. Gherardini M, Mazomenos E, Menciassi A, Stoyanov D (2020) Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2020.105420

    Article  Google Scholar 

  11. Gomes EF, Bentley PJ, Coimbra M, Pereira E, Deng Y (2013) Classifying heart sounds: approaches to the PASCAL challenge. In: HEALTHINF 2013—proceedings of the international conference on health informatics

    Google Scholar 

  12. McFee B, Raffel C, Liang D, Ellis D, McVicar M, Battenberg E, Nieto O (2015) Librosa: audio and music signal analysis in python. In: Proceedings of the 14th python in science conference

    Google Scholar 

  13. Transfer W, Now L, Scenarios TL, Methods TL (2017) Transfer learning—machine learning’s next frontier. PPT

    Google Scholar 

  14. Hassan MU (2018) VGG16—convolutional network for classification and detection. Neurohive

    Google Scholar 

  15. Howard AG, Zhu M (2017) MobileNets: open-source models for efficient on-device vision. Google AI Blog

    Google Scholar 

  16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) GoogLeNet. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2015.7298594

    Article  Google Scholar 

  17. Zeng G, He Y, Yu Z, Yang X, Yang R, Zhang L (2016) InceptionNet/GoogLeNet—going deeper with convolutions. CVPR. https://doi.org/10.1002/jctb.4820

    Article  Google Scholar 

  18. Krizhevsky A, Sutskever I, Geoffrey EH (2012) Imagenet. Adv Neural Inf Process Syst 25.https://doi.org/10.1109/5.726791

  19. Chollet F (2015) Keras documentation. Keras.Io

    Google Scholar 

  20. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX symposium on operating systems design and implementation, OSDI 2016

    Google Scholar 

  21. Gupta DS (2017) Fundamentals of deep learning—activation functions and their use. Anal Vidhya

    Google Scholar 

  22. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision

    Google Scholar 

  23. Ting KM (2017) Confusion matrix. In: Encyclopedia of machine learning and data mining

    Google Scholar 

  24. Neapolitan RE, Neapolitan RE (2018) Neural networks and deep learning. Artif Intell

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Universiti Malaysia Pahang for funding this study via RDU180321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar P. P. Abdul Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almanifi, O.R.A., Mohd Razman, M.A., Musa, R.M., Ab. Nasir, A.F., Ismail, M.Y., P. P. Abdul Majeed, A. (2022). The Classification of Heartbeat PCG Signals via Transfer Learning. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_5

Download citation

Publish with us

Policies and ethics