Skip to main content

The Classification of Wink-Based EEG Signals: An Evaluation of Different Transfer Learning Models for Feature Extraction

  • Conference paper
  • First Online:
Recent Trends in Mechatronics Towards Industry 4.0

Abstract

Electroencephalogram (EEG) is non-trivial in the diagnosis and treatment of neurogenerative diseases. Brain-Computer Interface (BCI) that utilises EEG is often used to improve the activities of daily living of patients with the aforesaid disorder. In this study, the efficacy of different Transfer Learning (TL) models, i.e., ResNet50, ResNet101 and ResNet152 in extracting features to classify wink-based EEG signals is evaluated. The time–frequency spectrum transformation of the Right-Wink, Left-Wink, and No-Wink based on EEG signals was achieved via Discrete Wavelet Transform (DWT). The extracted features were then fed into different variation of Support Vector Machine (SVM) classifiers to evaluate the performance of the different feature extraction method in classifying the wink class. The data are divided into training, validation, ad test, with a stratified ratio of 60:20:20. It was shown from the study, that the features extracted via ResNet152 were better than that of ResNet50 and ResNet101. The overall validation and test accuracy attained through the ResNet152 model is approximately 92%. Henceforth, it could be concluded that the proposed pipeline suitable to be adopted to classify wink-based EEG signals for different BCI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganasegeran K, Fadzly M, Jamil A, Sivasampu S (2019) Discover! Malaysia’s stroke care revolution—special edition. ResearchGate 2:1–32

    Google Scholar 

  2. Ab Patar MNA, Said AF, Mahmud J, Majeed APPA, Razman MA (2014) System integration and control of dynamic ankle foot orthosis for lower limb rehabilitation. In: ISTMET 2014—1st international symposium technology management emerging technology Proceedings, vol 2, pp 82–85. https://doi.org/10.1109/ISTMET.2014.6936482

  3. Shih JJ, Krusienski DJ, Wolpaw JR (2012) Brain-computer interfaces in medicine. Mayo Clin Proc 87:268–279. https://doi.org/10.1016/j.mayocp.2011.12.008

    Article  Google Scholar 

  4. Vaughan TM (2003) Brain-computer interface technology: a review of the second international meeting. IEEE Trans Neural Syst Rehabil Eng 11:94–109. https://doi.org/10.1109/TNSRE.2003.814799

    Article  Google Scholar 

  5. Lin JS, Hsieh CH (2016) A wireless BCI-controlled integration system in smart living space for patients. Wirel Pers Commun 88:395–412. https://doi.org/10.1007/s11277-015-3129-0

    Article  Google Scholar 

  6. Rashid M, Sulaiman N, Majeed APPA, Musa RM, Ahmad AF, Bari BS, Khatun S (2020) Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front Neurorobot 14:1–35. https://doi.org/10.3389/fnbot.2020.00025

  7. Domrös F, Störkle D, Ilmberger J, Kuhlenkötter B (2013) Converging clinical and engineering research on neurorehabilitation. Converg Clin Eng Res Neurorehab 1:409–413. https://doi.org/10.1007/978-3-642-34546-3

    Article  Google Scholar 

  8. Huang Y, Yang J, Liu S, Pan J (2019) Combining facial expressions and electroencephalography to enhance emotion recognition. Futur Internet 11:1–17. https://doi.org/10.3390/fi11050105

    Article  Google Scholar 

  9. Choy TTC, Leung PM (1988) Real time microprocessor-based 50 Hz notch filter for ECG. J Biomed Eng 10:285–288. https://doi.org/10.1016/0141-5425(88)90013-1

    Article  Google Scholar 

  10. Jayant HK, Rana KPS, Kumar V, Nair SS, Mishra P (2006) Efficient IIR notch filter design using minimax optimisation for 50 Hz noise suppression in ECG. In: Proceedings of 2015 international conference on signal processing computing control. ISPCC 2015, pp 290–295. https://doi.org/10.1109/ISPCC.2015.7375043

  11. Leske S, Dalal SS (2019) Reducing power line noise in EEG and MEG data via spectrum interpolation. Neuroimage 189:763–776. https://doi.org/10.1016/j.neuroimage.2019.01.026

    Article  Google Scholar 

  12. Bekbalanova M, Zhunis A, Duisebekov Z (2019) Epileptic seizure prediction in EEG signals using EMD and DWT. In: 2019 15th international conference on electronics comput. Comput. 1–4 (2019)

    Google Scholar 

  13. Gholami R, Fakhari N (2017) Support vector machine: principles, parameters, and applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811318-9.00027-2

  14. Yang J, Singh H, Hines EL, Schlaghecken F, Iliescu DD, Leeson MS, Stocks NG (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif Intell Med 55:117–126. https://doi.org/10.1016/j.artmed.2012.02.001

    Article  Google Scholar 

  15. World Health Organization (2008) Neurological disorders. Public Health Challenges. J Nerv Ment Dis 196:176. https://doi.org/10.1097/nmd.0b013e31816372ab

  16. Musa RM, Majeed APPA, Taha Z, Chang SW, Nasir AF, Abdullah MR (2019) A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLoS One 14:1–12. https://doi.org/10.1371/journal.pone.0209638

Download references

Acknowledgements

The present study is funded by Universiti Malaysia Pahang via RDU180321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar P. P. Abdul Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahendra Kumar, J.L. et al. (2022). The Classification of Wink-Based EEG Signals: An Evaluation of Different Transfer Learning Models for Feature Extraction. In: Ab. Nasir, A.F., Ibrahim, A.N., Ishak, I., Mat Yahya, N., Zakaria, M.A., P. P. Abdul Majeed, A. (eds) Recent Trends in Mechatronics Towards Industry 4.0. Lecture Notes in Electrical Engineering, vol 730. Springer, Singapore. https://doi.org/10.1007/978-981-33-4597-3_6

Download citation

Publish with us

Policies and ethics