Skip to main content

Methods for Monitoring Macroautophagy in Pancreatic Cancer Cells

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Macroautophagy is a catabolic process through which redundant, aged, or damaged cellular structures are first enclosed within double-membrane vesicles (called autophagosomes), and thereafter degraded within lysosomes. Macroautophagy provides a primary route for the turnover of macromolecules, membranes and organelles, and as such plays a major role in cell homeostasis. As part of the stress response, autophagy is crucial to determine the cell fate in response to extracellular or intracellular injuries. Autophagy is involved in cancerogenesis and in cancer progression. Here we illustrate the essential methods for monitoring autophagy in pancreatic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. https://doi.org/10.1038/cr.2013.168 Epub 2013 Dec 24. Review

    Article  CAS  PubMed  Google Scholar 

  2. Orsi A, Polson HE, Tooze SA (2010) Membrane trafficking events that partake in autophagy. Curr Opin Cell Biol 22(2):150–156. https://doi.org/10.1016/j.ceb.2009.11.013 Review

    Article  CAS  PubMed  Google Scholar 

  3. Metlagel Z, Otomo C, Ohashi K, Takaesu G, Otomo T (2014) Structural insights into E2-E3 interaction for LC3 lipidation. Autophagy 10(3):522–523. https://doi.org/10.4161/auto.27594 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Svenning S, Johansen T (2013) Selective autophagy. Essays Biochem 55:79–92. https://doi.org/10.1042/bse0550079 Review

    Article  CAS  PubMed  Google Scholar 

  5. Lippai M, Lőw P (2014) The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res Int 2014:832704. https://doi.org/10.1155/2014/832704 Review

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yin XM, Ding WX (2013) The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy 9(11):1687–1692. https://doi.org/10.4161/auto.24871 Review

    Article  CAS  PubMed  Google Scholar 

  7. Galluzzi L, Pietrocola F, Levine B, Kroemer G (2014) Metabolic control of autophagy. Cell 159(6):1263–1276. https://doi.org/10.1016/j.cell.2014.11.006 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Awan MU, Deng Y (2014) Role of autophagy and its significance in cellular homeostasis. Appl Microbiol Biotechnol 98(12):5319–5328. https://doi.org/10.1007/s00253-014-5721-8 Epub 2014 Apr 18. Review

    Article  CAS  PubMed  Google Scholar 

  9. Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 4(6):pii: a008813. https://doi.org/10.1101/cshperspect.a008813 Review

    Article  CAS  Google Scholar 

  10. New M, Van Acker T, Long JS, Sakamaki JI, Ryan KM, Tooze SA (2017) Molecular pathways controlling autophagy in pancreatic cancer. Front Oncol 7:28. https://doi.org/10.3389/fonc.2017.00028 eCollection 2017. Review

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729. https://doi.org/10.1101/gad.2016111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC et al (2014) Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist 19:637. https://doi.org/10.1634/theoncologist.2014-0086

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A et al (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504:296–300. https://doi.org/10.1038/nature12865

    Article  CAS  PubMed  Google Scholar 

  14. Eng CH, Wang Z, Tkach D, Toral-Barza L, Ugwonali S, Liu S et al (2016) Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci U S A 113:182–187. https://doi.org/10.1073/pnas.1515617113

    Article  CAS  PubMed  Google Scholar 

  15. Thuwajit C, Ferraresi A, Titone R, Thuwajit P, Isidoro C (2017) The metabolic cross-talk between epithelial cancer cells and stromal fibroblasts in ovarian cancer progression: Autophagy plays a role. Med Res Rev. https://doi.org/10.1002/med.21473

    Article  PubMed  PubMed Central  Google Scholar 

  16. von Ahrens D, Bhagat TD, Nagrath D, Maitra A, Verma A (2017) The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol 10(1):76. https://doi.org/10.1186/s13045-017-0448-5

    Article  CAS  Google Scholar 

  17. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536(7617):479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29(2):381–389

    Article  CAS  PubMed  Google Scholar 

  20. Hosokawa N, Hara Y, Mizushima N (2006) Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett 580(11):2623–2629

    Article  CAS  PubMed  Google Scholar 

  21. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    Article  PubMed  PubMed Central  Google Scholar 

  22. Janda E, Lascala A, Carresi C, Parafati M, Aprigliano S, Russo V, Savoia C, Ziviani E, Musolino V, Morani F, Isidoro C, Mollace V (2015) Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: implications for neuroprotection. Autophagy 11(7):1063–1080. https://doi.org/10.1080/15548627.2015.1058683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kraft LJ, Manral P, Dowler J, Kenworthy AK (2016) Nuclear LC3 associates with slowly diffusing complexes that survey the nucleolus. Traffic 17(4):369–399. https://doi.org/10.1111/tra.12372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910 Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K (2004) Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson's disease. Brain Res 1012(1–2):42–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Isidoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vidoni, C., Ferraresi, A., Seca, C., Secomandi, E., Isidoro, C. (2019). Methods for Monitoring Macroautophagy in Pancreatic Cancer Cells. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics