Skip to main content

Induction of Pancreatic Inflammation Accelerates Pancreatic Tumorigenesis in Mice

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Pancreatitis is a major risk factor for the development of pancreatic cancer. In genetically engineered mouse models, induction of pancreatic inflammation dramatically accelerates oncogenic KRas-induced fibrosis, precancerous PanIN formation, and tumorigenesis. Here we describe simple methods of secretagogue-induced experimental acute and chronic pancreatitis, the most commonly used pancreatitis models, and their applications in pancreatic cancer research. Additionally, the preparation of primary pancreatic acinar cells is introduced. Primary acinar cells can be used to study the early events of pancreatic inflammation and pancreatic acinar-to-ductal (ADM) metaplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yadav D, Lowenfels AB (2013) The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144(6):1252–1261

    Article  Google Scholar 

  2. Uc A et al (2016) Chronic pancreatitis in the 21st century—research challenges and opportunities: summary of a national institute of diabetes and digestive and kidney diseases workshop. Pancreas 45(10):1365–1375

    Article  CAS  Google Scholar 

  3. Daniluk J et al (2012) An NF-kappaB pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice. J Clin Invest 122(4):1519–1528

    Article  CAS  Google Scholar 

  4. Lew D, Afghani E, Pandol S (2017) Chronic pancreatitis: current status and challenges for prevention and treatment. Dig Dis Sci 62(7):1702–1712

    Article  Google Scholar 

  5. Kambhampati S, Park W, Habtezion A (2014) Pharmacologic therapy for acute pancreatitis. World J Gastroenterol 20(45):16868–16880

    Article  CAS  Google Scholar 

  6. Willemer S, Elsasser HP, Adler G (1992) Hormone-induced pancreatitis. Eur Surg Res 24(Suppl 1):29–39

    Article  Google Scholar 

  7. Mizunuma T, Kawamura S, Kishino Y (1984) Effects of injecting excess arginine on rat pancreas. J Nutr 114(3):467–471

    Article  CAS  Google Scholar 

  8. Dawra R et al (2007) Development of a new mouse model of acute pancreatitis induced by administration of L-arginine. Am J Physiol Gastrointest Liver Physiol 292(4):G1009–G1018

    Article  CAS  Google Scholar 

  9. Griffith WH, and Wade NJ (1939) Choline metabolism. 1. The occurrence and prevention of hemorrhagic degeneration in young rats on a low choline diet. J Biol Chem 131:567–577. https://www.cabdirect.org/cabdirect/abstract/19391404485

  10. Pandol SJ et al (1999) Ethanol diet increases the sensitivity of rats to pancreatitis induced by cholecystokinin octapeptide. Gastroenterology 117(3):706–716

    Article  CAS  Google Scholar 

  11. (1985) Memoir on the pancreas and on the role of pancreatic juice in digestive processes, particularly in the digestion of neutral fat. By Claude Bernard. 1856. Translated by John Henderson. Monogr Physiol Soc 42:1–131

    Google Scholar 

  12. Kirkbride MB (1912) The islands of langerhans after ligation of the pancreatic ducts. J Exp Med 15(1):101–105

    Article  CAS  Google Scholar 

  13. Cheever FS, Daniels JB, Hersey EF (1950) A viral agent isolated from a case of "non-paralytic poliomyelitis" and pathogenic for suckling mice: its possible relation to the coxsackie group of viruses. J Exp Med 92(2):153–167

    Article  CAS  Google Scholar 

  14. Vonlaufen A et al (2007) Bacterial endotoxin: a trigger factor for alcoholic pancreatitis? Evidence from a novel, physiologically relevant animal model. Gastroenterology 133(4):1293–1303

    Article  CAS  Google Scholar 

  15. Merkord J et al (2001) Repeated administration of a mild acute toxic dose of di-n-butyltin dichloride at intervals of 3 weeks induces severe lesions in pancreas and liver of rats. Hum Exp Toxicol 20(8):386–392

    Article  CAS  Google Scholar 

  16. Lee AT et al (2015) Alcohol and cigarette smoke components activate human pancreatic stellate cells: implications for the progression of chronic pancreatitis. Alcohol Clin Exp Res 39(11):2123–2133

    Article  CAS  Google Scholar 

  17. Zhan X et al (2016) Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 311(3):G343–G355

    Article  Google Scholar 

  18. Bi Y, Ji B (2016) Spontaneous pancreatitis in genetically modified animal strains. Pancreapedia: exocrine pancreas knowledge base. doi: https://doi.org/10.3998/panc.2016.8

  19. Anastasi A, Erspamer V, Endean R (1967) Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea. Experientia 23(9):699–700

    Article  CAS  Google Scholar 

  20. Lampel M, Kern HF (1977) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol 373(2):97–117

    Article  CAS  Google Scholar 

  21. Ji B, Logsdon CD (2011) Digesting new information about the role of trypsin in pancreatitis. Gastroenterology 141(6):1972–1975

    Article  CAS  Google Scholar 

  22. Tartakoff AM et al (1975) Studies on the pancreas of the guinea pig. Parallel processing and discharge of exocrine proteins. J Biol Chem 250(7):2671–2677

    CAS  PubMed  Google Scholar 

  23. Vege SS (2017) Continuing medical education questions: september 2017: chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol 112(9):1373

    Article  Google Scholar 

  24. Neuschwander-Tetri BA et al (2000) Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Dig Dis Sci 45(4):665–674

    Article  CAS  Google Scholar 

  25. Treiber M et al (2011) Myeloid, but not pancreatic, RelA/p65 is required for fibrosis in a mouse model of chronic pancreatitis. Gastroenterology 141(4):1473–1485 1485 e1–7

    Article  CAS  Google Scholar 

  26. Apte MV, Pirola RC, Wilson JS (2012) Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 3:344

    Article  Google Scholar 

  27. Hingorani SR et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4(6):437–450

    Article  CAS  Google Scholar 

  28. Guerra C et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11(3):291–302

    Article  CAS  Google Scholar 

  29. Nakhai H et al (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134(6):1151–1160

    Article  CAS  Google Scholar 

  30. Ji B et al (2008) Robust acinar cell transgene expression of CreErT via BAC recombineering. Genesis 46(8):390–395

    Article  CAS  Google Scholar 

  31. Jin L et al (2013) Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A 110(10):3907–3912

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work presented in this chapter was supported by Grant W81XWH-15-1-0257 from the US Department of Defense. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhuang, L., Zhan, X., Bi, Y., Ji, B. (2019). Induction of Pancreatic Inflammation Accelerates Pancreatic Tumorigenesis in Mice. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics