Skip to main content

Generation of Induced Pluripotent Stem Cell-Like Lines from Human Pancreatic Ductal Adenocarcinoma

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1882))

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, mainly because the tumors are detected too late for effective treatment or for developing suitable therapeutics. Reprogramming cancer cells to pluripotency by induced pluripotent stem cell (iPSC) technology, which can be then programmed back to their original cellular state, allows for studying the dynamic events in the course of the disease progression. Thus, we applied iPSC technology to model early progression of PDAC. We showed that when an iPS-like cell line, designated 10-22, derived from human recurrent PDAC, was injected into immunodeficient mice, the cells consistently recapitulated preinvasive, pancreatic intraepithelial neoplasia (PanIN) to invasive stages of human PDAC. This model was recently validated by revealing a new biomarker that can classify early resectable PDAC patients from healthy subjects. The procedure to derive iPSCs from human PDAC is principally theĀ same as the procedure to generate iPSCsĀ from normal human fibroblast. However, the heterogeneous initial populations, different cellular states, and active memory of pancreatic epithelial cells challenge for making iPSC-like lines from human PDAC. Herein, we describe how to create and maintain iPSC-like line from human PDAC by lentiviral transduction of reprogramming factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahib L et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913ā€“2921

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Rubio-Viqueira B et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12(15):4652ā€“4661

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030ā€“1037

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Lonardo E et al (2011) Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 9(5):433ā€“446

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Boj SF et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1ā€“2):324ā€“338

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663ā€“676

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861ā€“872

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Kim J et al (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3(6):2088ā€“2099

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Pepe MS et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054ā€“1061

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Pepe MS et al (2008) Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 100(20):1432ā€“1438

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Kim J et al (2017) Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci Transl Med 9(398):eaah5583

    ArticleĀ  Google ScholarĀ 

  12. Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1(1):241ā€“245

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Barde, I., P. Salmon, and D. Trono 2010 Production and titration of lentiviral vectors. Curr Protoc Neurosci. Chapter 4: p. Unit 4.21

    Google ScholarĀ 

  14. Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495ā€“505

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145ā€“1147

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Lerou PH et al (2008) Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat Protoc 3(5):923ā€“933

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Park IH et al (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180ā€“1186

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681ā€“686

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Hongguang H, Loh YH, Aryee MJ, Lensch MW, Li H, Collins JJ, Feinberg AP, Daley GQ (2011) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotech 29:1117ā€“1119

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Stricker SH, Feber A, Engstrƶm PG, CarĆ©n H, Kurian KM, Takashima Y, Watts C, Way M, Dirks P, Bertone P, Smith A, Beck S, Pollard SM (2013) Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 27:654ā€“669

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32:2249ā€“2260

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, Xavy S, Shen J, Haag D, Chanda S, Sinha R, Morganti RM, Nishimura T, Ameen M, Wu H, Wernig M, Wu JC, Majeti R (2017) Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem cell 20:329ā€“344

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, Vora S, Solovyov A, Husser C, Olszewska M, Teruya-Feldstein J, Perumal D, Klimek VM, Spyridonidis A, Rampal RK, Silverman L, Reddy EP, Papaemmanuil E, Parekh S, Greenbaum BD, Leslie CS, Kharas MG, Papapetrou EP (2017) Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell 20:315ā€“328

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Lee DF et al (2015) Modeling familial cancer with induced pluripotent stem cells. Cell 161:240ā€“253. https://www.ncbi.nlm.nih.gov/pubmed/25860607

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Zaret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, J., Zaret, K.S. (2019). Generation of Induced Pluripotent Stem Cell-Like Lines from Human Pancreatic Ductal Adenocarcinoma. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 1882. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8879-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8879-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8878-5

  • Online ISBN: 978-1-4939-8879-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics