Skip to main content

Different Types of In Vitro Cultures of Schisandra chinensis and Its Cultivar (S. chinensis cv. Sadova): A Rich Potential Source of Specific Lignans and Phenolic Compounds

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Chinese magnolia vine (Schisandra chinensis) is a well-known traditional Chinese medicinal plant species, which is very important in modern phytotherapy. The key role is assigned to specific compounds – dibenzocyclooctadiene lignans. This chapter describes the use of S. chinensis in vitro cultures as a tool to increase their production under controlled conditions as a promising biotechnological alternative to their extraction from ex vitro plant material or by chemical synthesis. Moreover, the chosen phenolic compounds (phenolic acids and flavonoids) were taken into consideration, too. The whole process of biotechnological research was applied to studying S. chinensis and its cultivar – S. chinensis cv. Sadova No. 1. The studies involved initiation of in vitro cultures, optimization of the basal composition of the culture media, duration of the growth cycles, type of cultures, culture lighting conditions, elicitors, and bioreactor design. In all the steps of biotechnological process, efficient production of specific lignans and phenolic compounds was achieved. The research proved that plant in vitro cultures of both Schisandras can be an efficient tool used to increase the production of the desired secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

6-Benzyladenine

DW:

Dry weight

GA3:

Gibberellic acid

LC-DAD:

Liquid chromatography with diode-array detection

LC-DAD-ESI-MS:

Liquid chromatography with diode-array detection and electrospray ionization mass spectrometry

LC-UV:

Liquid chromatography with ultraviolet-visible detector

LS:

Linsmaier and Skoog

MS:

Murashige and Skoog

NAA:

1-Naphthaleneacetic acid

PGRs:

Plant growth regulators

WV5:

Westvaco

References

  1. Saunders RMK (2000) Monograph of Schisandra (Schisandraceae). Systematic botany monographs. American Society of Plant Taxonomists, Ann Arbor, pp 1–146

    Google Scholar 

  2. Ekiert RJ (2005) Cytryniec chiński – niedoceniany dar chińskiej medycyny. Lek w Polsce (Drug in Poland) 15:88–92. (in Polish)

    Google Scholar 

  3. Wyk BE, Wink M (2008) Rośliny lecznicze świata. MedPharm, Wrocław, Polska (in Polish)

    Google Scholar 

  4. Szopa A, Ekiert R, Ekiert H (2017) Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev 16:195–218. https://doi.org/10.1007/s11101-016-9470-4

    Article  CAS  PubMed  Google Scholar 

  5. Wu Z, Raven P, Hong DY (2008) Flora of China, vol 7. Science Press/Missouri Botanical Garden Press, Beijing/St Louis

    Google Scholar 

  6. Panossian A, Wikman G (2008) Pharmacology of Schisandra chinensis Baill.: an overview of Russian research and uses in medicine. J Ethnopharmacol 118:183–212. https://doi.org/10.1016/j.jep.2008.04.020

    Article  PubMed  Google Scholar 

  7. Hancke JL, Burgos RA, Ahumada F (1999) Schisandra chinensis (Turcz.) Baill. Fitoterapia 70:451–471. https://doi.org/10.1016/S0367-326X(99)00102-1

    Article  CAS  Google Scholar 

  8. European Directorate for the Quality of Medicines (2008) Schisandrae chinensis fructus. In: European Pharmacopoeia 6.0. Council of Europe, Strasburg, France

    Google Scholar 

  9. Urząd Rejestracji Produktów Leczniczych Wyrobów Medycznych i Produktów Biobójczych. Rzeczpospolita Polska (2009) Schisandrae chinensis fructus. In: Farmakopea Polska VIII, Poland

    Google Scholar 

  10. European Directorate for the Quality of Medicines (2017) Schisandra fruit. In: European Pharmacopoeia 9.0. Council of Europe, Strasburg, France

    Google Scholar 

  11. Urząd Rejestracji Produktów Leczniczych Wyrobów Medycznych i Produktów Biobójczych (2018) Schisandrae chinensis fructus. In: Farmakopea Polska XI, Poland

    Google Scholar 

  12. Committee of the Japanese Pharmacopoeia Evaluation and Licensing Division Pharmaceuticals and Food Safety (2006) Japanese pharmacopoeia. Bureau Ministry of Health, Labour and Welfare, Tokyo

    Google Scholar 

  13. Central Pharmaceutical Affairs Council of Korea (2002) Korean Pharmacopoeia. Seoul, Korea

    Google Scholar 

  14. Chinese Pharmacopoeia Commission (2005) Pharmacopoeia of the People’s Republic of China. China Chemical Industry Press, Beijing, China

    Google Scholar 

  15. Upton R, Graff A, Jolliffe G et al (2011) American Herbal Pharmacopoeia: botanical pharmacognosy – microscopic characterization of botanical medicines. CRC Press, Boca-Raton, USA

    Google Scholar 

  16. World Health Organization (2007) WHO monographs on selected medicinal plants, vol 3. Fructus Schisandrae, Geneva, Switzerland

    Google Scholar 

  17. Shaitan I (2005) Колбасина ЕИ: Актиндия и лимонник (Actinidia and Chinese Magnolia vine). Moscow, Russia (in Russian)

    Google Scholar 

  18. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2018) Phytochemical and biotechnological studies on Schisandra chinensis cultivar Sadova no. 1 – a high utility medicinal plant. Appl Microbiol Biotechnol 102:5105–5120. https://doi.org/10.1007/s00253-018-8981-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szopa A, Klimek M, Ekiert H (2016) Chinese magnolia vine (Schisandra chinensis) – therapeutic and cosmetic importance. Cytryniec chiński (Schisandra chinensis) – znaczenie lecznicze i kosmetyczne. Pol J Cosmetol 19:274–284. (in Polish)

    Google Scholar 

  20. Wang C (2008) Diphenyl dimethyl bicarboxylate in the treatment of viral hepatitis, adjuvant or curative? Gastroenterol Res 1:2–7. https://doi.org/10.4021/gr2008.10.1231

    Article  CAS  Google Scholar 

  21. Szopa A, Barnaś M, Ekiert H (2018) Phytochemical studies and biological activity of three Chinese Schisandra species (Schisandra sphenanthera, Schisandra henryi and Schisandra rubriflora): current findings and future applications. Phytochem Rev. 18:109–128. https://doi.org/10.1007/s11101-018-9582-0

    Article  Google Scholar 

  22. Jiang Y, Fan X, Wang Y et al (2015) Hepato-protective effects of six Schisandra lignans on acetaminophen-induced liver injury are partially associated with the inhibition of CYP-mediated bioactivation. Chem Biol Interact 231:83–89. https://doi.org/10.1016/j.cbi.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  23. Cheng N, Ren N, Gao H et al (2013) Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice. Food Chem Toxicol 55:234–240. https://doi.org/10.1016/j.fct.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  24. Ip SP, Mak DHF, Li PC et al (1996) Effect of a lignan-enriched extract of Schisandra chinensis on aflatoxin B1 and cadmium chloride-induced hepatotoxicity in rats. Pharmacol Toxicol 78:413–416. https://doi.org/10.1111/j.1600-0773.1996.tb00228.x

    Article  CAS  PubMed  Google Scholar 

  25. Hou W, Gao W, Wang D et al (2015) The protecting effect of deoxyschisandrin and schisandrin B on HaCaT cells against UVB-induced damage. PLoS One 10:1–11. https://doi.org/10.1371/journal.pone.0127177

    Article  CAS  Google Scholar 

  26. Waiwut P, Shin M-S, Yokoyama S et al (2012) Gomisin a enhances tumor necrosis factor-α-induced G1 cell cycle arrest via signal transducer and activator of transcription 1-mediated phosphorylation of retinoblastoma protein. Biol Pharm Bull 35:1997–2003

    Article  CAS  Google Scholar 

  27. Smejkal K, Slapetova T, Krmencik P et al (2010) Evaluation of cytotoxic activity of Schisandra chinensis lignans. Planta Med 76:1672–1677. https://doi.org/10.1055/s-0030-1249861

    Article  CAS  PubMed  Google Scholar 

  28. Hwang D, Shin SY, Lee Y et al (2011) A compound isolated from Schisandra chinensis induces apoptosis. Bioorg Med Chem Lett 21:6054–6057. https://doi.org/10.1016/j.bmcl.2011.08.065

    Article  CAS  PubMed  Google Scholar 

  29. Zhao T, Mao G, Mao R et al (2013) Antitumor and immunomodulatory activity of a water-soluble low molecular weight polysaccharide from Schisandra chinensis (Turcz.) Baill. Food Chem Toxicol 55:609–616. https://doi.org/10.1016/j.fct.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Grandi N, Del Vecchio C et al (2015) From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J Microbiol 53:288–293. https://doi.org/10.1007/s12275-015-4652-0

    Article  CAS  PubMed  Google Scholar 

  31. Opletal L, Sovová H, Bártlová M (2004) Dibenzo [a,c]cyclooctadiene lignans of the genus Schisandra: importance, isolation and determination. J Chromatogr B 812:357–371. https://doi.org/10.1016/j.jchromb.2004.07.040

    Article  CAS  Google Scholar 

  32. Hwang SY, Lee YJ, Lee YK et al (2009) Gomisin N isolated from Schisandra chinensis significantly induces anti-proliferative and pro-apoptotic effects in hepatic carcinoma. Mol Med Rep 2:725–732. https://doi.org/10.3892/mmr_00000163

    Article  CAS  PubMed  Google Scholar 

  33. Zhao T, Mao G, Feng W et al (2014) Isolation, characterization and antioxidant activity of polysaccharide from Schisandra sphenanthera. Carbohydr Polym 105:26–33. https://doi.org/10.1016/j.carbpol.2014.01.059

    Article  CAS  PubMed  Google Scholar 

  34. Mocan A, Crișan G, Vlase L et al (2014) Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits. Molecules 19:15162–15179. https://doi.org/10.3390/molecules190915162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henry F, Danoux L, Pauly G (2012) Cosmetic use of an extract of the fruit of Schisandra chinensis. European patent specification, EP 1,699,475 B1

    Google Scholar 

  36. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25. https://doi.org/10.1023/A:1015871916833

    Article  CAS  Google Scholar 

  37. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D et al (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21:182–182. https://doi.org/10.3390/molecules21020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deepthi S, Satheeshkumar K (2017) Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L. Appl Microbiol Biotechnol 101:545–558. https://doi.org/10.1007/s00253-016-7808-x

    Article  Google Scholar 

  39. Szpitter A, Królicka A (2005) Stymulujący wpływ elicytorów biotycznych na produkcjê farmakologicznie czynnych metabolitów wtórnych w roślinnych kulturach in vitro. Biotechnologia 4:82–108. (in Polish)

    Google Scholar 

  40. Pietrosiuk A, Furmanowa M (2006) Plant biotechnology in human healthcare. Biotechnologia 4:116–123

    Google Scholar 

  41. Wysokińska H, Chmiel A (2006) Produkcja roślinnych metabolitów wtórnych w kulturach organów transformowanych. Biotechnologia 4:124–135. (in Polish)

    Google Scholar 

  42. Wysokińka H (2000) Wytwarzanie metabolitów wtórnych w kulturach korzeni transformowanych. Biotechnologia 4:32–39. (in Polish)

    Google Scholar 

  43. Ekiert H (2009) Farmaceutyczne aspekty biotechnologii roślin. Część I. Wprowadzenie – metodyka i główne kierunki badawcze. Biotechnologia 65:69–77. (in Polish)

    Google Scholar 

  44. Hegnauer R (1962) Chemotaxonomie der Pflanzen. Springer Basel AG, Switzerland

    Book  Google Scholar 

  45. Wichtl M (2004) Herbal drugs and phytopharmaceuticals. Medpharm, Stuttgart, Germany

    Google Scholar 

  46. Chang J, Reiner J, Xie J (2005) Progress on the chemistry of dibenzocyclooctadiene lignans. Chem Rev 105:4581–4609. https://doi.org/10.1021/cr050531b

    Article  CAS  PubMed  Google Scholar 

  47. Shi P, He Q, Zhang Y et al (2009) Characterisation and identification of isomeric dibenzocyclooctadiene lignans from Schisandra chinensis by high-performance liquid chromatography combined with electrospray ionisation tandem mass spectrometry. Phytochem Anal 20:197–206. https://doi.org/10.1002/pca.1115

    Article  CAS  PubMed  Google Scholar 

  48. Khadem S, Marles RJ (2010) Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 15:7985–8005. https://doi.org/10.3390/molecules15117985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ekiert H, Kwiecień I, Szopa A (2013) Rosmarinic acid production in plant in vitro cultures. Pol J Cosmetol 16:49–58

    Google Scholar 

  50. Matkowski A (2008) Plant in vitro culture for the production of antioxidants – a review. Biotechnol Adv 26:548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  51. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M (2002) Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Sci 162:981–987. https://doi.org/10.1016/S0168-9452(02)00052-3

    Article  CAS  Google Scholar 

  52. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  53. Heleno SA, Martins A, Queiroz MJRP, Ferreira ICFR (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513. https://doi.org/10.1016/j.foodchem.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  54. Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x

    Article  CAS  PubMed  Google Scholar 

  55. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. eCollection:162750. https://doi.org/10.1155/2013/162750

    Google Scholar 

  56. Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxidant properties of flavonoids. Fitoterapia 82:513–523. https://doi.org/10.1016/j.fitote.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  57. Kumar MS, Chaudhury S, Balachandran S (2014) In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity. Appl Biochem Biotechnol 174:2897–2909. https://doi.org/10.1007/s12010-014-1235-1

    Article  CAS  PubMed  Google Scholar 

  58. Nijveldt RJ, Nood E, Hoorn DE et al (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425. https://doi.org/10.1093/ajcn/74.4.418

    Article  CAS  PubMed  Google Scholar 

  59. Le Marchand L (2002) Cancer preventive effects of flavonoids – a review. Biomed Pharmacother 56:296–301. https://doi.org/10.1016/S0753-3322(02)00186-5

    Article  Google Scholar 

  60. Szopa A, Ekiert H (2012) In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) – a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 166:1941–1948. https://doi.org/10.1007/s12010-012-9622-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mocan A, Schafberg M, Crisan G, Rohn S (2016) Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J Funct Foods 24:579–594. https://doi.org/10.1016/j.jff.2016.05.007

    Article  CAS  Google Scholar 

  62. Mocan A, Zengin G, Crişan G, Mollica A (2016) Enzymatic assays and molecular modeling studies of Schisandra chinensis lignans and phenolics from fruit and leaf extracts. J Enzyme Inhib Med Chem 6366:1–11. https://doi.org/10.1080/14756366.2016.1222585

    Article  CAS  Google Scholar 

  63. Smíšková A, Vlašínová H, Havel L (2005) Somatic embryogenesis from zygotic embryos of Schisandra chinensis. Biol Plant 49:451–454. https://doi.org/10.1007/s10535-005-0027-4

    Article  Google Scholar 

  64. Kim TD, Anbazhagan VR, Park JI (2005) Somatic embryogenesis in Schisandra chinensis (Turcz.) Baill. In Vitro Cell Dev Biol Plant 41:253–257. https://doi.org/10.1079/IVP2004630

    Article  CAS  Google Scholar 

  65. Chen AH, Yang JL, Niu Y Da, et al (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tiss Organ Cult 102:357–364. https://doi.org/10.1007/s11240-010-9740-6

    Article  CAS  Google Scholar 

  66. Yang JL, Da Niu Y, Yang CP, et al (2011) Induction of somatic embryogenesis from female flower buds of elite Schisandra chinensis. Plant Cell Tiss Organ Cult 106:391–399. https://doi.org/10.1007/s11240-011-9935-5

    Article  CAS  Google Scholar 

  67. Havel L, Vlašínová H, Bohatcová I et al (2008) Dibenzocyclooctadiene lignan production in Schisandra chinensis embryogenic culture. J Biotechnol 136:S437. https://doi.org/10.1016/j.jbiotec.2008.07.1012

    Article  Google Scholar 

  68. Kohda H, Ozaki M, Namera A (2012) Production of lignans in calluses of Schisandra chinensis. J Nat Med 66:373–376. https://doi.org/10.1007/s11418-011-0586-y

    Article  CAS  PubMed  Google Scholar 

  69. Březinová L, Vlašínová H, Havel L et al (2010) Validated method for bioactive lignans in Schisandra chinensis in vitro cultures using a solid phase extraction and a monolithic column application. Biomed Chromatogr 24:954–960. https://doi.org/10.1002/bmc.1391

    Article  CAS  PubMed  Google Scholar 

  70. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  71. Szopa A, Ekiert H (2013) Production of deoxyschizandrin and gamma-schizandrin in shoot-differentiating and undifferentiating callus cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine). J Biotechnol 165:209–213

    Article  CAS  Google Scholar 

  72. Szopa A, Ekiert H (2011) Lignans in Schisandra chinensis in vitro cultures. Pharmazie 66:633–634

    CAS  PubMed  Google Scholar 

  73. Szopa A, Ekiert H (2014) Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) in vitro cultures. In: Govil J (ed) Recent Progress in Medicinal Plants. Biotechnology and Genetic Engineering II, 39th ed. Studium Press LLC, Houston, pp 405–434

    Google Scholar 

  74. Szopa A, Ekiert H (2015) Production of schisantherin A and gomisin G in in vitro cultures of Schisandra chinensis. Phytochem Lett 11:440–444. https://doi.org/10.1016/J.PHYTOL.2014.12.022

    Article  CAS  Google Scholar 

  75. Szopa A, Kokotkiewicz A, Marzec-Wróblewska U et al (2016) Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill. Appl Microbiol Biotechnol 100:3965–3977. https://doi.org/10.1007/s00253-015-7230-9

    Article  CAS  PubMed  Google Scholar 

  76. Zhang H, Zhang G, Zhu Z et al (2009) Determination of six lignans in Schisandra chinensis (Turcz.) Baill. fruits and related Chinese multiherb remedies by HPLC. Food Chem 115:735–739. https://doi.org/10.1016/j.foodchem.2008.12.010

    Article  CAS  Google Scholar 

  77. Szopa A, Ekiert H (2016) The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (Turcz.) Baill. cultures in vitro. Plant Cell Tiss Organ Cult 127:115–121. https://doi.org/10.1007/s11240-016-1034-1

    Article  CAS  Google Scholar 

  78. Szopa A, Kokotkiewicz A, Król A et al (2018) Improved production of dibenzocyclooctadiene lignans in the elicited microshoot cultures of Schisandra chinensis (Chinese magnolia vine). Appl Microbiol Biotechnol 102:945–959. https://doi.org/10.1007/s00253-017-8640-7

    Article  CAS  PubMed  Google Scholar 

  79. Szopa A, Kokotkiewicz A, Luczkiewicz M, Ekiert H (2017) Schisandra lignans production regulated by different bioreactor type. J Biotechnol 247:11–17. https://doi.org/10.1016/j.jbiotec.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  80. http://www.clematis.com.pl/

  81. Szopa A, Kokotkiewicz A, Bednarz M et al (2017) Studies on the accumulation of phenolic acids and flavonoids in different in vitro culture systems of Schisandra chinensis (Turcz.) Baill. using a DAD-HPLC method. Phytochem Lett 20:462–469. https://doi.org/10.1016/j.phytol.2016.10.016

    Article  CAS  Google Scholar 

  82. Ellnain-Wojtaszek M, Zgorka G (1999) High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J Liq Chromatogr Relat Technol 22:1457–1471. https://doi.org/10.1081/JLC-100101744

    Article  CAS  Google Scholar 

  83. Sułkowska-Ziaja K, Maślanka A, Szewczyk A, Muszyńska B (2017) Physiologically active compounds in four species of Phellinus. Nat Prod Commun 12:363–336

    PubMed  Google Scholar 

  84. Szopa A, Kokotkiewicz A, Bednarz M et al (2019) Bioreactor type affects the accumulation of phenolic acids and flavonoids in microshoot cultures of Schisandra chinensis (Turcz.) Baill. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-019-01676-6

    Article  CAS  Google Scholar 

  85. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2019) Phenolic acid and flavonoid production in agar, agitated and bioreactor-grown microshoot cultures of Schisandra chinensis cv. Sadova No. 1 – a valuable medicinal plant. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2019.08.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported the financial support of the funds of the Ministry of Science and Higher Education Programs: K/DSC/000029, K/DSC/001950, K/DSC/004297, K/ZDS/003312, K/ZDS/005614, and National Science Centre, Poland (grant number 2016/23/D/NZ7/01316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Szopa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szopa, A., Kokotkiewicz, A., Klimek-Szczykutowicz, M., Luczkiewicz, M., Ekiert, H. (2020). Different Types of In Vitro Cultures of Schisandra chinensis and Its Cultivar (S. chinensis cv. Sadova): A Rich Potential Source of Specific Lignans and Phenolic Compounds. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_10-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_10-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    cv. Sadova): A Rich Potential Source of Specific Lignans and Phenolic Compounds
    Published:
    01 January 2020

    DOI: https://doi.org/10.1007/978-3-030-11253-0_10-2

  2. Original

    cv. Sadova): A Rich Potential Source of Specific Lignans and Phenolic Compounds
    Published:
    28 November 2019

    DOI: https://doi.org/10.1007/978-3-030-11253-0_10-1