Skip to main content

Mass Change Trends from GRACE Gravity Field Time Series

Encyclopedia of Geodesy
  • 622 Accesses

Definition

Mass change trend. Linear or nonlinear change rate in mass over a certain time span.

Introduction

Gravity field time series derived from the Gravity Recovery and Climate Experiment (GRACE) project (e.g., Tapley et al., 2004) substantially upgraded our knowledge about mass redistribution in the Earth’s system on both regional and global scales. The GRACE project is a joint partnership between the US National Aeronautics and Space Administration (NASA) and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt (DLR)); official GRACE websites are maintained by the Center for Space Research (CSR) of the University of Texas at Austin (http://www.csr.utexas.edu/grace), the Jet Propulsion Laboratory (JPL , http://grace.jpl.nasa.gov), and the GeoForschungsZentrum (GFZ) Potsdam (http://www-app2.gfz-potsdam.de/pbl/op/grace). During the last decade, the satellite data have frequently been exploited to detect and quantify land surface hydrology variability, ice mass...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Baur, O., 2012. On the computation of mass-change trends from GRACE gravity field time-series. Journal of Geodynamics, 61, 120–128, doi:10.1016/j.jog.2012.03.007.

    Article  Google Scholar 

  • Baur, O., Kuhn, M., and Featherstone, W. E., 2009. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. Journal of Geophysical Research, 114, B06407, doi:10.1029/2008JB006239.

    Article  Google Scholar 

  • Baur, O., Kuhn, M., and Featherstone, W. E., 2013. Continental mass change from GRACE over 2002–2011 and its impact on sea level. Journal of Geodesy, 87, 117–125, doi:10.1007/s00190-012-0583-2.

    Article  Google Scholar 

  • Cazenave, A., and Chen, J., 2010. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth and Planetary Science Letters, 298, 263–274, doi:10.1016/j.epsl.2010.07.035.

    Article  Google Scholar 

  • Chao, B. F., and Gross, R. S., 1987. Changes in the Earth’s rotation and low-degree gravitational field induced by earthquakes. Geophysical Journal of the Royal Astronomical Society, 91, 569–596, doi:10.1111/j.l365-246X.1987.tb01659.x.

    Article  Google Scholar 

  • Flechtner, F., Watkins, M., Morton, P., Webb, F., Massmann, F.-H., and Grunwaldt, L., 2014. Status of the GRACE follow-on mission. EGU General Assembly 2014. Geophysical Research Abstracts, 16, EGU2014–4460.

    Google Scholar 

  • Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F., 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852–857, doi:10.1126/science.l234532.

    Article  Google Scholar 

  • Geruo, A., Wahr, J., and Zhong, S., 2013. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192, 557–572, doi:10.1093/gji/ggs030.

    Article  Google Scholar 

  • Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T., Wise, S., and Griffiths, M., 2008. Increased runoff from melt from the Greenland ice sheet: a response to global warming. Journal of Climate, 21, 331–341, doi:10.1175/2007JCLI1964.1.

    Article  Google Scholar 

  • Heck, B., and Seitz, K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. Journal of Geodesy, 81, 121–136, doi:10.1007/s00190-006-0094-0.

    Article  Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacob, T., Wahr, J., Pfeffer, W. T., and Swenson, S., 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482, 514–518, doi:10.1038/nature10847.

    Article  Google Scholar 

  • Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R., 2009. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83, 903–913, doi:10.1007/s00190-009-0308-3.

    Article  Google Scholar 

  • Lemoine, J. M., Bruinsma, S., Loyer, S., Biancale, R., Marty, J. C., Perosanz, F., and Balmino, G., 2007. Temporal gravity field models inferred from GRACE data. Advances in Space Research, 39, 1620–1629, doi:10.1016/j.asr.2007.03.062.

    Article  Google Scholar 

  • Leuliette, E. W., and Willis, J. K., 2011. Balancing the sea level budget. Oceanography, 24, 122–129, doi:10.5670/oceanog.2011.32.

    Article  Google Scholar 

  • Schmidt, R., Petrovic, S., Güntner, A., Barthelmes, F., Wünsch, J., and Kusche, J., 2008. Periodic components of water storage changes from GRACE and global hydrology models. Journal of Geophysical Research, 113, B08419, doi:10.1029/2007JB005363.

    Article  Google Scholar 

  • Steffen, H., Petrovic, S., Müller, J., Schmidt, R., Wünsch, J., Barthelmes, F., and Kusche, J., 2009. Significance of secular trends of mass variations determined from GRACE solutions. Journal of Geodynamics, 48, 157–165, doi:10.1016/j.jog.2009.09.029.

    Article  Google Scholar 

  • Swenson, S., and Wahr, J., 2006. Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33, L08402, doi:10.1029/2005GL025285.

    Google Scholar 

  • Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M., 2004. GRACE measurements of mass variability in the Earth system. Science, 305, 503–505, doi:10.1126/science.1099192.

    Article  Google Scholar 

  • Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36, L19503, doi:10.1029/2009GL040222.

    Article  Google Scholar 

  • Wahr, J., Molenaar, M., and Bryan, F., 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103, 30,205–30,229, doi:10.1029/98JB02844.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Baur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Baur, O. (2014). Mass Change Trends from GRACE Gravity Field Time Series. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mass Change Trends from GRACE and GRACE-FO Gravity Field Time Series
    Published:
    29 July 2023

    DOI: https://doi.org/10.1007/978-3-319-02370-0_54-2

  2. Original

    Mass Change Trends from GRACE Gravity Field Time Series
    Published:
    26 May 2015

    DOI: https://doi.org/10.1007/978-3-319-02370-0_54-1