Skip to main content

Perinatal Physiology

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Surgery

Abstract

This chapter will discuss the mechanisms preparing the fetus to be born, the transition at birth, and the successful adaptation to the air-breathing world. This chapter will review the respiratory system including lung development, maturation, and role of surfactant system and the respiratory drive and chemoreceptor role and the circulatory system including fetal circulation and its changes at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol. 2006;570(Pt 1):53–8.

    Article  CAS  PubMed  Google Scholar 

  • Abman SH. Abnormal vasoreactivity in the pathophysiology of persistent pulmonary hypertension of the newborn. Pediatr Rev. 1999;20(11):e103–9.

    Article  CAS  PubMed  Google Scholar 

  • Abman SH, Stevens T. Perinatal pulmonary vasoregulation: implications for the pathophysiology and treatment of neonatal pulmonary hypertension. In: Haddad G, Lister G, editors. Tissue oxygen deprivation: developmental, molecular and integrative function. New York: Marcel Dekker; 1996. p. 367–432.

    Google Scholar 

  • Abman SH, Accurso FJ, Wilkening RB, Meschia G. Persistent fetal pulmonary hypoperfusion after acute hypoxia. Am J Phys. 1987;253(4 Pt 2):H941–8.

    CAS  Google Scholar 

  • Abman SH, Chatfield BA, Rodman DM, Hall SL, McMurtry IF. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am J Phys. 1991;260(4 Pt 1):L280–5.

    CAS  Google Scholar 

  • Adamson SL, Richardson BS, Homan J. Initiation of pulmonary gas exchange by fetal sheep in utero. J Appl Physiol. 1987;62(3):989–98.

    Article  CAS  PubMed  Google Scholar 

  • Adamson SL, Kuipers IM, Olson DM. Umbilical cord occlusion stimulates breathing independent of blood gases and pH. J Appl Physiol. 1991;70:1796–809.

    Article  CAS  PubMed  Google Scholar 

  • Alvaro RE, Hasan SU, Chemtob S, Qurashi M, Al-Saif S, Rigatto H. Prostaglandins are responsible for the inhibition of breathing observed with a placental extract in fetal sheep. Respir Physiol Neurobiol. 2004;144(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  • Bahoric A, Chernick V. Electrical activity of phrenic nerve and diaphragm in utero. J Appl Physiol. 1975;39:513–8.

    Article  CAS  PubMed  Google Scholar 

  • Barcroft J. The brain and its environment. New Haven: Yale University Press; 1938. p. 44.

    Google Scholar 

  • Barcroft J. Researches on pre-natal life. Springfield: Charles C Thomas Publisher; 1946. p. 261–6.

    Google Scholar 

  • Bartelds B, Van Bel F, Teitel DF, et al. Carotid, not aortic, chemoreceptors mediate the fetal cardiovascular response to acute hypoxemia in lambs. Pediatr Res. 1993;34(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  • Bennet L, Gluckman PD, Johnston BM. The effects of corticotrophin-releasing hormone on breathing movements and electrocortical activity of the fetal sheep. J Physiol. 1988;23:72–5.

    CAS  Google Scholar 

  • Bennet L, Johnston BM, Vale WW, et al. The central effects of thyrotropin-releasing factor and two antagonists on breathing movements in fetal sheep. J Physiol. 1990;421:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco CE, Dawes GS, Hanson MA, et al. The arterial chemoreceptors in fetal sheep and newborn lambs. J Physiol. 1982;330:38P.

    Google Scholar 

  • Blanco CE, Dawes GS, Walker DW. Effects of hypoxia on polysynaptic hind-limb reflexes of unanaesthetized fetal and new-born lambs. J Physiol. 1983a;339:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco CE, Dawes GS, Walker DW. Effects of hypoxia on polysynaptic hind-limb reflexes in new-born lambs before and after carotid denervation. J Physiol. 1983b;339:467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco CE, Dawes GS, Hanson MA, et al. The response to hypoxia of arterial chemoreceptors in fetal sheep and newborn lambs. J Physiol. 1984;351:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco CE, Martin CB, Rankin J, Landauer M, Phernetton T. Changes in fetal organ flow during intrauterine mechanical ventilation with or without oxygen. J Dev Physiol. 1988a;10(1):53–62.

    CAS  PubMed  Google Scholar 

  • Blanco CE, Hanson MA, McCoocke HB. Effects on carotid chemoreceptor resetting of pulmonary ventilation in the fetal lamb in utero. J Dev Physiol. 1988b;10:167–74.

    CAS  PubMed  Google Scholar 

  • Boddy K, Dawes GS, Fisher R, et al. Foetal respiratory movements, electrocortical activity and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol. 1974;243:599–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouayad A, Hou X, Varma DR, Clyman RI, Fouron J-C, Chemtob S. Cyclooxygenase isoforms and prostaglandin E2 receptors in the ductus arteriosus. Curr Ther Res. 2002;63(10):669–81.

    Article  CAS  Google Scholar 

  • Bowes G, Adamson TM, Ritchie BC, et al. Development of patterns of respiratory activity in unanaesthetized fetal sheep in utero. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:693–700.

    CAS  PubMed  Google Scholar 

  • Bystrzycka E, Nail B, Purves MJ. Central and peripheral neural respiratory activity in the mature sheep fetus and newborn lamb. Respir Physiol. 1975;25:199–215.

    Article  CAS  PubMed  Google Scholar 

  • Clewlow R, Dawes GS, Johnston BM, Walker DW. Changes in breathing, electrocortical and muscle activity in unanaesthetized fetal lambs with age. J Physiol. 1983;341:463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clyman RI. Mechanisms regulating closure of the ductus arteriosus. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology. Philadelphia: Saunders; 2004. p. 743–8.

    Chapter  Google Scholar 

  • Clyman RI. Mechanisms regulating the ductus arteriosus. Biol Neonate. 2006;89(4):330–5.

    Article  PubMed  Google Scholar 

  • Coceani F, Baragatti B. Mechanisms for ductus arteriosus closure. Semin Perinatol. 2012;36(2):92–7.

    Article  PubMed  Google Scholar 

  • Contratti G, Banzi C, Ghi T, Perolo A, Pilu G, Visentin A. Absence of the ductus venosus: report of 10 new cases and review of the literature. Ultrasound Obstet Gynecol. 2001;18(6):605–9.

    Article  CAS  PubMed  Google Scholar 

  • Cooke IRC, Berger PH. Precursor of respiratory pattern in the early gestation mammalian fetus. Brain Res. 1990;522:333–6.

    Article  CAS  PubMed  Google Scholar 

  • Cooper EJ, Wareing M, Greenwood SL, Baker PN. Oxygen tension and normalisation pressure modulate nifedipine-sensitive relaxation of human placental chorionic plate arteries. Placenta. 2006;27(4–5):402–10.

    Article  CAS  PubMed  Google Scholar 

  • Crossley KJ, Nicol MB, Hirst JJ, et al. Suppression of arousal by progesterone in fetal sheep. Reprod Fertil Dev. 1997;9:767–73.

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Gonzalez I, Solis J, Kiernan TJ, Yan BP, Lam YY, Palacios IF. Clinical manifestation and current management of patent foramen ovale. Expert Rev Cardiovasc Ther. 2009;7(8):1011–22.

    Article  PubMed  Google Scholar 

  • Dawes GS. The central control of fetal breathing and skeletal muscle movements. J Physiol. 1984;346:1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawes GS, Fox HE, Leduc BM, et al. Respiratory movements and rapid eye movements sleep in the fetal lamb. J Physiol. 1972;220(1):119–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawes GS, Gardner WN, Johnston BM, et al. Breathing in fetal lambs: the effects of brain stem section. J Physiol. 1983;335:535–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzialowski EM, Sirsat T, van der Sterren S, Villamor E. Prenatal cardiovascular shunts in amniotic vertebrates. Respir Physiol Neurobiol. 2011;178(1):66–74.

    Article  PubMed  Google Scholar 

  • Echtler K, Stark K, Lorenz M, Kerstan S, Walch A, Jennen L, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med. 2010;16(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  • Everett TR, Peebles DM. Antenatal tests of fetal wellbeing. Semin Fetal Neonatal Med. 2015;20(3):138–43.

    Article  PubMed  Google Scholar 

  • Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20(4):210–6.

    Article  PubMed  Google Scholar 

  • Fletcher DJ, Hanson MA, Moore PJ, et al. Stimulation of breathing movements by L-5-hydroxytryptophan in fetal sheep during normoxia and hypoxia. J Physiol. 1988;404:575–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90(4):1291–335.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Delgado R, Garcia-Rodriguez R, Romero Requejo A, et al. Echographic features and perinatal outcomes in fetuses with congenital absence of ductus venosus. Acta Obstet Gynecol Scand. 2017;96(10):1205–13.

    Article  CAS  PubMed  Google Scholar 

  • Giussani DA, Spencer JAD, Moore PJ, et al. Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol. 1993;461:431–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Gunn TR, Johnston BM. The effect of cooling on breathing and shivering in unanaesthetized fetal lambs in utero. J Physiol. 1983;343:495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer JJ, Martin-Caraballo M. Developmental plasticity of phrenic motoneuron and diaphragm properties with the inception of inspiratory drive transmission in utero. Exp Neurol. 2017;287(Pt 2):137–43.

    Article  PubMed  Google Scholar 

  • Guerra FA, Savich RD, Clyman RI, et al. Meclofenamate increases ventilation in lambs. J Dev Physiol. 1989;11(1):1–6.

    CAS  PubMed  Google Scholar 

  • Hampl V, Bibova J, Stranak Z, Wu X, Michelakis ED, Hashimoto K, et al. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol. 2002;283(6):H2440–9.

    Article  CAS  PubMed  Google Scholar 

  • Hamrick SE, Hansmann G. Patent ductus arteriosus of the preterm infant. Pediatrics. 2010;125(5):1020–30.

    Article  PubMed  Google Scholar 

  • Hanson MA. Peripheral chemoreceptor function before and after birth. In: Johnston BM, Gluckman P, editors. Respiratory control and lung development in the fetus and newborn. Ithaca: perinatology press; 1986. p. 311–30.

    Google Scholar 

  • Hanson MA, Moore PJ, Nijhuis JG, et al. Effects of pilocarpine on breathing movements in normal, chemodenervated and brain stem-transected fetal sheep. J Physiol. 1988;400:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding R, Bocking AD, Sigger JN. Influence of upper respiratory tract on liquid flow to and from fetal lungs. J Appl Physiol. 1985;61(1):68–74.

    Article  Google Scholar 

  • Hasan SU, Lee DS, Gibson DA, et al. Effect of morphine on breathing and behavior in fetal sheep. J Appl Physiol. 1988;64:2058–65.

    Article  CAS  PubMed  Google Scholar 

  • Haworth SG, Hislop AA. Lung development-the effects of chronic hypoxia. Semin Neonatol. 2003;8(1):1–8.

    Article  PubMed  Google Scholar 

  • Hohimer AR, Bissonnette JM. Effects of metabolic acidosis on fetal breathing movements in utero. Respir Physiol. 1981;43(2):99–106.

    Article  Google Scholar 

  • Honest H, Bachmann LM, Sengupta R, et al. Accuracy of absence of fetal breathing movements in predicting preterm birth: a systematic review. Ultrasound Obstet Gynecol. 2004;24(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  • Inanlou MR, Baguma-Nibasheka M, Kablar B. The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol. 2005;20(4):1261–6.

    CAS  PubMed  Google Scholar 

  • Ioffe S, Jansen AH, Chernick V. Maturation of spontaneous fetal diaphragmatic activity and fetal response to hypercapnia and hypoxemia. J Appl Physiol. 1987;62:609–22.

    Article  Google Scholar 

  • Jansen AH, Ioffe S, Chernick V. Stimulation of fetal breathing activity by beta-adrenergic mechanisms. J Appl Physiol. 1986;60:1938–45.

    Article  CAS  PubMed  Google Scholar 

  • Johnston BM, Gluckman PD. Lateral pontine lesion affects central chemosensitivity in unanaesthetized fetal lambs. J Physiol. 1989;67:1113–8.

    CAS  Google Scholar 

  • Khong TY, Tee JH, Kelly AJ. Absence of innervation of the uteroplacental arteries in normal and abnormal human pregnancies. Gynecol Obstet Investig. 1997;43(2):89–93.

    Article  CAS  Google Scholar 

  • Kinsella JP, Abman SH. Recent developments in the pathophysiology and treatment of persistent pulmonary hypertension of the newborn. J Pediatr. 1995;126(6):853–64.

    Article  CAS  PubMed  Google Scholar 

  • Kiserud T, Ozaki T, Nishina H, Rodeck C, Hanson MA. Effect of NO, phenylephrine, and hypoxemia on ductus venosus diameter in fetal sheep. Am J Physiol Heart Circ Physiol. 2000;279(3):H1166–71.

    Article  CAS  PubMed  Google Scholar 

  • Kitterman JA, Liggins GC, Clements JA, et al. Stimulation of breathing movements in fetal sheep by inhibitors of prostaglandin synthesis. J Dev Physiol. 1979;1:453–66.

    CAS  PubMed  Google Scholar 

  • Kitterman JA, Liggins GC, Fewell JE, et al. Inhibition of breathing movements in fetal sheep of sodium meclofenamate. J Appl Physiol Respir Environ Exerc Physiol. 1983;54:687–92.

    CAS  PubMed  Google Scholar 

  • Koos BJ. Central effects on breathing in fetal sheep of sodium meclofenamate. J Physiol. 1982;330:50–1P.

    Google Scholar 

  • Koos BJ. Central stimulation of breathing movements in fetal lambs by prostaglandin synthetase inhibitors. J Physiol. 1985;362:455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuma S, Nishina H, Unno N, et al. Goat fetuses disconnected from the placenta, but reconnected to an artificial placenta, display intermittent breathing movements. Biol Neonate. 1999;75(6):388–97.

    Article  CAS  PubMed  Google Scholar 

  • Kuipers IM, Maertzdorf WM, De Jong DS, et al. Effects of mild hypocapnia on fetal breathing and behavior in unanaesthetized normoxic fetal lambs. J Appl Physiol. 1994;76:1476–80.

    Article  CAS  PubMed  Google Scholar 

  • Kuipers IM, Maertzdorf EJ, De Jong DS, et al. Initiation and maintenance of continuous breathing at birth. Pediatr Res. 1997;42(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Hanson MA. Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the newborn lamb. J Dev Physiol. 1989;11:199–206.

    CAS  PubMed  Google Scholar 

  • Lagercrantz H, Pequignot JM, Hertzberg T, et al. Birth-related changes of expression and turnover of some neuroactive agents and respiratory control. Biol Neonate. 1994;65(3–4):145–8.

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Nowlan NC, Vaidyanathan R, Shaw CJ, Lees CC. Fetal movements as a predictor of health. Acta Obstet Gynecol Scand. 2016;95(9):968–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalor JG, Fawole B, Alfirevic Z, Devane D. Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev. 2008;1:CD000038.

    Google Scholar 

  • Lee DS, Choy P, Davi M, et al. Decrease in plasma prostaglandin E 2 is not essential for the establishment of continuous breathing at birth in sheep. J Dev Physiol. 1989;12(3):145–51.

    CAS  PubMed  Google Scholar 

  • Long WA. Prostaglandins and control of breathing in newborn piglets. J Appl Physiol. 1988;64(1):409–18.

    Article  CAS  PubMed  Google Scholar 

  • Maruotti GM, Saccone G, Ciardulli A, et al. Absent ductus venosus: case series from two tertiary centres. J Matern Fetal Neonatal Med. 2018;31(18):2478–83.

    Article  PubMed  Google Scholar 

  • Molteni RA, Melmed MH, Sheldon RE, et al. Induction of fetal breathing by metabolic acidemia and its effects on blood flow to the respiratory muscles. Am J Obstet Gynecol. 1980;136:609–20.

    Article  CAS  PubMed  Google Scholar 

  • Murai DT, Wallen LD, Lee CC, et al. Effects of prostaglandins in fetal breathing do not involve peripheral chemoreceptors. J Appl Physiol. 1987;62(1):271–7.

    Article  CAS  PubMed  Google Scholar 

  • Murayama K, Nagasaka H, Tate K, Ohsone Y, Kanazawa M, Kobayashi K, et al. Significant correlations between the flow volume of patent ductus venosus and early neonatal liver function: possible involvement of patent ductus venosus in postnatal liver function. Arch Dis Child Fetal Neonatal Ed. 2006;91(3):F175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicol MB, Hirst JJ, Walker D, et al. Effect of alteration of maternal plasma progesterone concentrations on fetal behavioural state during late gestation. J Endocrinol. 1997;152(3):379–86.

    Article  CAS  PubMed  Google Scholar 

  • Noori S, Friedlich PS, Seri I. Pathophysiology of shock in the fetus and neonate. In: Polin RA, Fox WW, Abman SH, editors. Fetal and neonatal physiology. Philadelphia: Saunders; 2004. p. 772–81.

    Chapter  Google Scholar 

  • Parkes MJ, Moore PJ, Hanson MA. The effects of inhibition of 3-B hydroxysteroid dehydrogenase activity in sheep fetuses in utero. Proc Society Study Fetal Physiol Cairn. 1988;58

    Google Scholar 

  • Patrick J, Challis JRG, Cross J. Effects of maternal indomethacin administration on fetal breathing movements in sheep. J Dev Physiol. 1987;9(3):295–300.

    CAS  PubMed  Google Scholar 

  • Phillipson EA, Bowes G, Townsend ER, et al. Carotid chemoreceptors in ventilatory response to changes in venous CO2 load. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:1398–403.

    CAS  PubMed  Google Scholar 

  • Quilligan EJ, Clewlow F, Johnston BM, et al. Effects of 5-hydroxytryptophan on electrocortical activity and breathing movements of fetal sheep. Am J Obstet Gynecol. 1981;141(3):271–5.

    Article  CAS  PubMed  Google Scholar 

  • Reese J. Death, dying, and exhaustion in the ductus arteriosus: prerequisites for permanent closure. Am J Physiol Regul Integr Comp Physiol. 2006;290(2):R357–8.

    Article  CAS  PubMed  Google Scholar 

  • Reuss ML, Rudolph AM. Distribution and recirculation of umbilical and systemic venous blood flow in fetal lambs during hypoxia. J Dev Physiol. 1980;2(1–2):71–84.

    CAS  PubMed  Google Scholar 

  • Russell MJ, Dombkowski RA, Olson KR. Effects of hypoxia on vertebrate blood vessels. J Exp Zool A Ecol Genet Physiol. 2008;309A(2):55–63.

    Article  Google Scholar 

  • Sanchez-Esteban J, Tsai SW, Sang J, et al. Effects of mechanical forces on lung-specific gene expression. Am J Med Sci. 1998;316:200–4.

    CAS  PubMed  Google Scholar 

  • Sawa R, Asakura H, Power G. Changes in plasma adenosine during simulated birth of fetal sheep. J Appl Physiol. 1991;70:1524–8.

    Article  CAS  PubMed  Google Scholar 

  • Sebire NJ, Talbert D. The role of intraplacental vascular smooth muscle in the dynamic placenta: a conceptual framework for understanding uteroplacental disease. Med Hypotheses. 2002;58(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  • Seravalli V, Miller JL, Bloc-Abraham D, et al. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstet Gynecol Scand. 2016;95(6):635–44.

    Article  PubMed  Google Scholar 

  • Shaul PW. Regulation of vasodilator synthesis during lung development. Early Hum Dev. 1999;54(3):271–94.

    Article  CAS  PubMed  Google Scholar 

  • Smith GC. The pharmacology of the ductus arteriosus. Pharmacol Rev. 1998;50(1):35–58.

    CAS  PubMed  Google Scholar 

  • Smith GN, Brien JF, Homan J, et al. Effect of ethanol on ovine fetal and maternal plasma prostaglandin E2 concentrations and fetal breathing movements. J Dev Physiol. 1990a;14(1):23–8.

    CAS  PubMed  Google Scholar 

  • Smith GN, Brien JF, Homan J, et al. Indomethacin reversal of ethanol-induced suppression of ovine fetal breathing movements and relationship to prostaglandin E2. J Dev Physiol. 1990b;14(1):29–35.

    CAS  PubMed  Google Scholar 

  • Sommer RJ, Hijazi ZM, Rhodes JF Jr. Pathophysiology of congenital heart disease in the adult: part I: shunt lesions. Circulation. 2008;117(8):1090–9.

    Article  PubMed  Google Scholar 

  • Stephan-Blanchard E, Chardon K, Leke A, et al. In utero exposure to smoking and peripheral chemoreceptor function in preterm neonates. Pediatrics. 2010;125(3):e592–9.

    Article  PubMed  Google Scholar 

  • Steriade M, Contreras D, Amzica F. Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci. 1994;17:199–208.

    Article  CAS  PubMed  Google Scholar 

  • Stoller JZ, DeMauro SB, Dagle JM, Reese J. Current perspectives on pathobiology of the ductus arteriosus. J Clin Exp Cardiolog. 2012;8(1):S8–001.

    PubMed  PubMed Central  Google Scholar 

  • Szeto HH. Spectral edge frequency as a simple quantitative measure of maturation of electrocortical activity. Pediatr Res. 1990;27:289–92.

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH, Vo TDH, Dwyer G, et al. The ontogeny of fetal lamb electrocortical activity: a power spectral analysis. Am J Obstet Gynecol. 1985;153:462–6.

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH, Cheng PY, Decena JA, et al. Developmental changes in continuity and stability of breathing in the fetal lamb. Am J Phys. 1992;262:R452–8.

    CAS  Google Scholar 

  • Talbert D, Sebire NJ. The dynamic placenta: I. hypothetical model of a placental mechanism matching local fetal blood flow to local intervillus oxygen delivery. Med Hypotheses. 2004;62(4):511–9.

    Article  CAS  PubMed  Google Scholar 

  • Vries de JIP, Visser GHA, Prechtl HFR. The emergence of fetal behavior 1. Qualitative aspects. Early Hum Dev. 1982;7:301–22.

    Article  Google Scholar 

  • Wallen LD, Murai DT, Clyman RI, et al. Regulation of breathing movements in fetal sheep by prostaglandin E2. J Appl Physiol. 1986;60:526–31.

    Article  CAS  PubMed  Google Scholar 

  • Wallen LD, Murai DT, Clyman RI, et al. Effects of meclofenamate on breathing movements in fetal sheep before delivery. J Appl Physiol. 1988;64(2):759–66.

    Article  CAS  PubMed  Google Scholar 

  • Ward JP. Oxygen sensors in context. Biochim Biophys Acta. 2008;1777(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Watson CS, White SE, Homan JH, et al. Increase cerebral extracellular adenosine and decreased PGE2 during ethanol-induced inhibition of FBM. J Appl Physiol. 1999;86:1410–20.

    Article  CAS  PubMed  Google Scholar 

  • Weir E, Lopez-Barneo J, Buckler K, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353(19):2042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler JW, Ivy DD, Kinsella JP, Abman SH. The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation. Clin Perinatol. 1995;22(2):387–403.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter has been adapted from the author’s own chapter in the following publication: Copyright © 2011 From Newborn Surgery, Third Edition, by Prem Puri. Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blanco, C.E., Villamor, E. (2019). Perinatal Physiology. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_6-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_6-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Perinatal Physiology
    Published:
    11 October 2019

    DOI: https://doi.org/10.1007/978-3-642-38482-0_6-2

  2. Original

    Perinatal Physiology
    Published:
    06 March 2017

    DOI: https://doi.org/10.1007/978-3-642-38482-0_6-1