Skip to main content

Surface Runoff

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 282 Accesses

Abstract

Surface runoff, or overland flow, is a fundamental process of interest in hydrology. Surface runoff generation can occur at multiple scales, ranging from small pools of excess water that propagate downhill to stream networks that drain large catchments. Accurate quantification of runoff is vital to clarify the mechanisms and effects of overland flow and also indispensable to understand fundamental hydrological processes. In this chapter, four kinds of measurement techniques, including runoff plot method, curve number method, isotopic tracer method, and salt solution method, are introduced. Runoff plot experiments are often conducted to evaluate the rainfall–runoff processes and widely used to study runoff and/or sediment losses. The curve number method is used to estimate watershed direct-runoff volume by a curve number value which is developed based on measured watershed runoff and rainfall data. The isotopic tracer method is used to measure the surface runoff by separating its contribution from multicomponent based on the mass balance of stable isotopes. The salt solution method is usually used to measure the shallow water flow by detecting the movement of salt. Besides, models of surface runoff are also summarized in this chapter. The models can be classified into conceptual models and process-based models. The conceptual models are simple transfer functions describing a linear relationship between rainfall and surface runoff. While the process-based models take into account of the spatial variability of climate, soil, vegetation, and terrain, which are able to make a series of hydrological processes interconnected. Despite their complexities, the process-based models are very helpful to study the changes in hydrological processes caused by human activities. Furthermore, the vegetation has important impact on surface runoff. For instance, with the increase of vegetation coverage, surface runoff can be reduced effectively. And root induces macropores, which are of importance for runoff mitigation due to their large diameters and high connectivity, enhancing rapid rainfall infiltration and percolation to deeper soil layers. Finally, we put forward some challenges about the measurement and simulation of the surface runoff including the establishment of surface runoff observation network in different ecological system, the combination of land surface model and distributed hydrological model, and the coupling between ecological processes and the runoff process on different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M.B. Abbott, J.C. Bathurst, J.A. Cunge, P.E. O'Connell, J. Rasmussen, An introduction to the European Hydrological System – Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J. Hydrol. 87(1), 45–59 (1986)

    Article  Google Scholar 

  • J.R.C.B. Abrantes, R.B. Moruzzi, A. Silveira, J.L.M.P.D. Lima, Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: novel triple-tracer approach. J. Hydrol. 557, 362–377 (2018)

    Article  CAS  Google Scholar 

  • J.A. Adepetu, L.K. Akapa, Root growth and nutrient uptake characteristics of some cowpea varieties. Agron. J. 69(6), 940–943 (1977)

    Article  CAS  Google Scholar 

  • O. Al-Jubeh, Studies of natural vegetation characteristics at different Environment and range improvement practices at southern West Bank, M. Sc thesis, Hebron University, 2006

    Google Scholar 

  • G.F. Antonious, Reducing herbicide residues from agricultural runoff and seepage water. (2015)

    Google Scholar 

  • J.L. Arsenault, S. Poulcur, C. Messier, R. Guay, WinRHlZO™, a root-measuring system with a unique overlap correction method. Hortscience Am. Soc. Horticult. Sci. 30(4), 906 (1995)

    Google Scholar 

  • C. Asdak, P.G. Jarvis, P.V. Gardingen, A. Fraser, Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. J. Hydrol. 206(3), 237–244 (1998)

    Article  Google Scholar 

  • S.D. Baets, J. Poesen, B. Reubens, K. Wemans, J.D. Baerdemaeker, B. Muys, Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305(1–2), 207–226 (2008)

    Article  CAS  Google Scholar 

  • D.H. Barker, Vegetation and Slopes: Stabilization, Protection and Ecology (Thomas Telford, London, 1995)

    Book  Google Scholar 

  • J. Bauhus, C. Messier, Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agron. J. 91(1), 142–147 (1999)

    Article  Google Scholar 

  • A.G. Bengough, Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone J. 11(2), 460–460 (2012)

    Article  Google Scholar 

  • S. Bergstrom, Computer Models of Watershed Hydrology. (1995), pp. 443–476

    Google Scholar 

  • K.J. Beven, M.J. Kirkby, Taylor & Francis Online: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. Bull. 24(1), 43–69 (1979)

    Article  Google Scholar 

  • E.W. Bhark, E.E. Small, Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6(2), 0185–0196 (2003)

    Article  Google Scholar 

  • G. Bodner, L. Daniel, N. Alireza, S. Monika, M. Karl, K. Hans-Peter, A statistical approach to root system classification. Front. Plant Sci. 4(4), 292–292 (2013)

    Google Scholar 

  • W. Böhm, Methods of Studying Root Systems (Springer, Berlin/Heidelberg/New York, 1979), pp. 1–3

    Google Scholar 

  • W. Boughton, A hydrograph-based model for estimating the water yield of ungauged catchments. Proc. Hydrol. Water Resour. Symp. Newcastle Inst. Engs. Aust. Nat. Conf. Publ. 93(14), 317–324 (1993)

    Google Scholar 

  • W. Boughton, F. Chiew, Calibrations of the AWBM for use on ungauged catchments. Am. Soc. Civ. Eng. 14(6), 562–568 (2003)

    Google Scholar 

  • D.L. Brakensiek, H.B. Osborn, W.J. Rawls, Field Manual for Research in Agricultural Hydrology. (1979)

    Google Scholar 

  • F. Branson, G. Gifford, J. Owen, Rangeland hydrology. Range Science Series No. 1, Soc. Range Manage., Denver CO. (1972)

    Google Scholar 

  • F. Branson, G. Gifford, K. Renard, R. Hadley, Rangeland Hydrology. Range Sciences Series No. 1, October 1972, 1981. Soc. Range Manage., Denver CO. Kendall (ed.), (Hunt Publishing Co., Dubuque, 1981)

    Google Scholar 

  • J. Bromley, J. Brouwer, A. Barker, S. Gaze, C. Valentine, The role of surface water redistribution in an area of patterned vegetation in a semi-arid environment, south-west Niger. J. Hydrol. 198, 1–29 (1997)

    Article  Google Scholar 

  • C.J. Bronick, R. Lal, Soil structure and management: a review. Geoderma 124(1–2), 3–22 (2005)

    Article  CAS  Google Scholar 

  • P. Burlando, Hydrograph separation of runoff components based on measuring hydraulic state variables, tracer experiments, and weighting methods. Paper presented at integrated methods in catchment hydrology: tracer, remote sensing and new hydrometric techniques: proceedings of an international symposium held during IUGG 99, the XXII General Assembly of the International Union of Geodesy and Geophysics, Birmingham, IAHS, 18–30 July 1999

    Google Scholar 

  • R.J.C. Burnash, R.L. Ferral, R.A. Mcguire, A generalized streamflow simulation system – conceptual modeling for digital computers. (1973)

    Google Scholar 

  • J.M. Buttle, Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr. 18(1), 16–41 (1994)

    Article  Google Scholar 

  • J.M. Buttle, in Chapter 1 – Fundamentals of Small Catchment Hydrology, Isotope Tracers in Catchment Hydrology (1998)

    Google Scholar 

  • I.R. Calder, P.T.W. Rosier, The design of large plastic-sheet net-rainfall gauges. J. Hydrol. 30(4), 403–405 (1976)

    Article  Google Scholar 

  • A. Calver, W.L. Wood, V.P. Singh, The Institute of Hydrology distributed model (1987)

    Google Scholar 

  • Y. Cantón, A. Solébenet, V.J. De, C. Boixfayos, A. Calvocases, C. Asensio, J. Puigdefábregas, A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J. Arid Environ. 75(12), 1254–1261 (2011)

    Article  Google Scholar 

  • H.E. Carley, R.D. Watson, A new gravimetric method for estimating root-surface areas. Soil Sci. 102(5), 289–291 (1966)

    Article  Google Scholar 

  • D.E. Carlyle-Moses, J.S.F. Laureano, A.G. Price, Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico. J. Hydrol. 297(1–4), 124–135 (2004)

    Article  Google Scholar 

  • C.E. Carter, D.A. Parsons, Field tests on the Coshocton-type wheel runoff sampler, 0133–0135 (1967)

    Google Scholar 

  • A. Cerda, Parent material and vegetation affect soil erosion in eastern Spain. Soil Sci. Soc. Am. J. 63(2), 362–368 (1999)

    Article  CAS  Google Scholar 

  • V.A. Chaplot, Y. Le Bissonnais, Runoff features for interrill erosion at different rainfall intensities, slope lengths, and gradients in an agricultural loessial hillslope. Soil Sci. Soc. Am. J. 67(3), 844–851 (2003)

    Article  CAS  Google Scholar 

  • F.H.S. Chiew, M.C. Peel, A.W. Western, V.P. Singh, D. Frevert, Application and testing of the simple rainfall-runoff model. SIMHYD, 335–367 (2002)

    Google Scholar 

  • S.K. Chong, R.E. Green, Sorptivity measurement and its application. (1983)

    Google Scholar 

  • C.A.A. Ciesiolka, B. Yu, C.W. Rose, H. Ghadiri, D. Lang, C. Rosewell, Improvement in soil loss estimation in USLE type experiments. J. Soil Water Conserv. 61(4), 223–229 (2006)

    Google Scholar 

  • E.A. Colman, Vegetation and watershed management (1953)

    Google Scholar 

  • E.S. Corbett, Rainfall interception by annual grass and chaparral; losses compared (1968)

    Google Scholar 

  • N.H. Crawford, The synthesis of continuous streamflow hydrographs on a digital computer (1962)

    Google Scholar 

  • N.H. Crawford, R.E. Linsley, Digital simulation in hydrology: Stanford watershed model IV, Evapotranspiration, 39 (1966)

    Google Scholar 

  • H.P. Cresswell, J.A. Kirkegaard, Subsoil amelioration by plant-roots – the process and the evidence. Soil Res. 33(2), 221–239 (1995)

    Article  Google Scholar 

  • H.P. Creswell, D.E. Smiles, J. Williams, Soil structure, soil hydraulic properties and the soil water balance. Aust. J. Soil Res. 30(3), 265–283 (1992)

    Article  Google Scholar 

  • R.H. Crockford, D.P. Richardson, Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol. Process. 14(16–17), 2903–2920 (2000)

    Article  Google Scholar 

  • Y. Cui, L. Jia, A modified Gash model for estimating rainfall interception loss of forest using remote sensing observations at regional scale. Water 6(4), 993–1012 (2014)

    Article  Google Scholar 

  • M.S. Czarnowski, J.L. Olszewski, Number and spacing of rainfall-gauges in a deciduous forest stand. Oikos 21(1), 48–51 (1970)

    Article  Google Scholar 

  • A.P.J. De Roo, R.J.E. Offermans, N.H.D.T. Cremers, LISEM: a single-event, physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application. Hydrol. Process. 10(8), 1119–1126 (2015)

    Article  Google Scholar 

  • C. Deasy, J.N. Quinton, M. Silgram, A.P. Bailey, B. Jackson, C.J. Stevens, Mitigation options for sediment and phosphorus loss from winter-sown Arable Crops. J. Environ. Qual. 38(38), 2121–2130 (2009)

    Article  CAS  Google Scholar 

  • S.L. Dingman, Physical hydrology. Phys. Hydrol. 11(1), 112–120 (2002)

    Google Scholar 

  • M. Dohnal, T. Černý, J. Votrubová, M. Tesař, Rainfall interception and spatial variability of throughfall in spruce stand. J. Hydrol. Hydromech. 62(4), 277–284 (2014)

    Article  Google Scholar 

  • M.G. Dosskey, K.D. Hoagland, J.R. Brandle, Change in filter strip performance over ten years. J. Soil Water Conserv. 62(1), 21–32 (2007)

    Google Scholar 

  • F. Duley, C.E. Domingo, Effect of grass on intake of water (1949)

    Google Scholar 

  • G. Dunjó, G. Pardini, M. Gispert, The role of land use–land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J. Arid Environ. 57(2), 239–256 (2004)

    Article  Google Scholar 

  • D. Dunkerley, Hydrologic effects of dryland shrubs: defining the spatial extent of modified soil water uptake rates at an Australian desert site. J. Arid Environ. 45(2), 159–172 (2000)

    Article  Google Scholar 

  • T. Dunne, Field studies of hillslope flow processes, in Hillslope Hydrology, ed. by M. J. Kirkby (Ed), (Wiley, New York, 1978), pp. 227–293

    Google Scholar 

  • T. Dunne, W.E. Dietrich, Experimental study of Horton overland flow on tropical hillslopes; 1, Soil conditions, infiltration and frequency of runoff. Z. Geomorphol. 2, 40–80 (1980)

    Google Scholar 

  • T. Dunne, T.R. Moore, C.H. Taylor, Recognition and prediction of runoff-producing zones in humid regions. Hydrol. Sci. Bull, 20, 305–327 (1975)

    Google Scholar 

  • T. Dunne, W. Zhang, B.F. Aubry, Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resour. Res. 27(9), 2271–2285 (1991)

    Article  Google Scholar 

  • J. Dusek, T. Vogel, M. Dohnal, H.H. Gerke, Combining dual-continuum approach with diffusion wave model to include a preferential flow component in hillslope scale modeling of shallow subsurface runoff. Adv. Water Resour. 44(44), 113–125 (2012)

    Article  Google Scholar 

  • E. Dyksterhuis, E. Schmutz, Natural mulches or “litter” of grasslands: with kinds and amounts on a southern prairie. Ecology 28(2), 163–179 (1947)

    Article  Google Scholar 

  • I.J. Edwards, W.D. Jackon, P.M. Fleming, Tipping bucket gauges for measuring run-off from experimental plots. Agric. Meteorol. 13(2), 189–201 (1974)

    Article  Google Scholar 

  • M. Eshghizadeh, A. Talebi, M.T. Dastorani, H. Azimzadeh, Effect of natural land covers on runoff and soil loss at the hill-slope scale. Glob. J. Environ. Sci. Manag. 2, 125–134 (2015)

    Google Scholar 

  • P.S. Evans, Root growth of Lolium perenne L. 1. Effect of plant age, seed weight, and nutrient concentration on root weight, length and number of apices. N. Z. J. Bot. 8, 544–556 (1970)

    Article  Google Scholar 

  • R.P. Ewing, T.C. Kaspar, Accurate perimeter and length measurement using an edge chord algorithm. J. Comput.-Assist. Microsc. 7, 91–100 (1995)

    Google Scholar 

  • D.X. Fan, Study on slope soil erosion response and model simulation in Beijing mountainous area, 166 (2014)

    Google Scholar 

  • Y. Fan, R.L. Bras, Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resour. Res. 34(4), 921–928 (1998)

    Article  Google Scholar 

  • J. Fan, K.T. Oestergaard, A. Guyot, D.A. Lockington, Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia. J. Hydrol. 515(13), 156–165 (2014)

    Article  Google Scholar 

  • A.D. Feldman, Hec models for water resources system simulation: theory and experience. Adv. Hydrosci. 12, 297–423 (1981)

    Article  Google Scholar 

  • D. Flanagan, M. Nearing, USDA-Water Erosion Prediction Project: hillslope profile and watershed model documentationRep., NSERL report (1995)

    Google Scholar 

  • J.P. Fortin, R. Turcotte, S. Massicotte, R. Moussa, J. Fitzback, J.P. Villeneuve, Distributed watershed model compatible with remote sensing and GIS data. II: application to Chaudière watershed. J. Hydrol. Eng. 6(2), 91–99 (2001)

    Article  Google Scholar 

  • C. Francis, J. Thornes, Runoff hydrographs from three Mediterranean vegetation cover types, vegetation and erosion. Process. Environ., 363–384 (1990)

    Google Scholar 

  • Z. Gan, J. Ye, Q. Zhou, Z. Zhou, Z. Shangguan, Effects of grass vegetations on the processes of soil erosion over slope lands in simulated rainfalls. Acta Ecol. Sin. 30(9), 2387–2396 (2010)

    Google Scholar 

  • W.R. Gardner, Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85(4), 228–232 (1958)

    Article  Google Scholar 

  • J. Gash, An analytical model of rainfall interception by forests. Q. J. R. Meteorol. Soc. 105(443), 43–55 (1979)

    Article  Google Scholar 

  • M.J. Gavazzi, G. Sun, S.G. McNulty, E.A. Treasure, M.G. Wightman, Canopy rainfall interception measured over ten years in a coastal plain loblolly pine (Pinus taeda L.) plantation. Trans. ASABE 59(2), 601–610 (2016)

    Article  Google Scholar 

  • G. Geisler, D. Maarufi, Investigations on the importance of the root systems of cultivated plants, 1: the influence of the soil water content and nitrogen manuring on plant growth, root morphology, transpiration and nitrogen absorption (1975)

    Google Scholar 

  • S. Germer, L. Werther, H. Elsenbeer, Have we underestimated stemflow? Lessons from an open tropical rainforest. J. Hydrol. 395(3–4), 169–179 (2010)

    Article  Google Scholar 

  • M. Ghestem, R.C. Sidle, A. Stokes, The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience 61(11), 869–879 (2011)

    Article  Google Scholar 

  • W.H. Green, G. Ampt, Studies on soil phsyics. J. Agric. Sci. 4(1), 1–24 (1911)

    Article  Google Scholar 

  • J.H. Gregory, M.D. Dukes, G.L. Miller, P.H. Jones, Analysis of double-ring infiltration techniques and development of a simple automatic water delivery system, Appl. Turfgrass Sci., 2 (2005)

    Article  Google Scholar 

  • G. Gyssels, J. Poesen, E. Bochet, Y. Li, Impact of plant roots on the resistance of soils to erosion by water: a review. Prog. Phys. Geogr. 29(2), 189–217 (2005)

    Article  Google Scholar 

  • A. Hanchi, M. Rapp, Stemflow determination in forest stands. For. Ecol. Manag. 97(3), 231–235 (1997)

    Article  Google Scholar 

  • D.M. Harris, J.J. Mcdonnell, A. Rodhe, Hydrograph separation using continuous open system isotope mixing. Water Resour. Res. 31(1), 157–171 (1995)

    Article  Google Scholar 

  • R.J. Haynes, M.H. Beare, Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol. Biochem. 29(11), 1647–1653 (1997)

    Article  CAS  Google Scholar 

  • G.C. Head, Estimating seasonal changes in the quantity of white unsuberized root on fruit trees. J Pomol Hortic Sci 41(2), 197–206 (1966)

    Article  Google Scholar 

  • J. Helvey, J.H. Patric, Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour. Res. 1(2), 193–206 (1965)

    Article  Google Scholar 

  • M. Herbst, J.M. Roberts, P.T.W. Rosier, D.J. Gowing, Measuring and modelling the rainfall interception loss by hedgerows in southern England. Agric. For. Meteorol. 141(2–4), 244–256 (2006)

    Article  Google Scholar 

  • A.G.J. Hilberts, P.A. Troch, C. Paniconi, J. Boll, Low-dimensional modeling of hillslope subsurface flow: Relationship between rainfall, recharge, and unsaturated storage dynamics. Water Resour. Res. 43(3), 305–310 (2007)

    Article  Google Scholar 

  • L.M. Himmelbauer, Loiskandl, Kastanek, Estimating length, average diameter and surface area of roots using two different image analyses systems: new challenges for rhizosphere research at the entrance of the 21st century. Plant Soil (2004)

    Google Scholar 

  • H.N. Holtan, Concept for infiltration estimates in watershed engineering (1961)

    Google Scholar 

  • F. Holwerda, F.N. Scatena, L.A. Bruijnzeel, Throughfall in a Puerto Rican lower montane rain forest: a comparison of sampling strategies. J. Hydrol. 327(3), 592–602 (2006)

    Article  Google Scholar 

  • R. Horn, A. Smucker, Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 82(1), 5–14 (2005)

    Article  Google Scholar 

  • R.E. Horton, Rainfall interception. Mon. Weather Rev. 47(9), 603–623 (1919)

    Article  Google Scholar 

  • R.E. Horton, An approach toward a physical interpretation of infiltration-capacity. Soil Sci. Soc. Am. J. 5(C), 399–417 (1941)

    Article  Google Scholar 

  • R. Horton, R. Horton, R.R. Horton, R.E. Horton, R. Horton, R.E. Horton, An approach towards physical interpretation of infiltration capacity (1940)

    Google Scholar 

  • M. Hrnčíř, M. Šanda, A. Kulasová, M. Císlerová, Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process. 24(16), 2248–2256 (2010)

    Article  Google Scholar 

  • S.P. Hu, Y.U. Xinxiao, Y.U.E. Yongjie, Hydrological effects of forest litters and soil in Baihua Mountain. J. Soil Water Conserv. 22(1), 146–150 (2008)

    Google Scholar 

  • P. Hubert, E. Marin, M. Meybeck, P. Olive, E. Siwertz, Aspects Hydrologiques et Sedimentologigues de la Crue Exceptionnelle de la Dranse du Chablais du 22 Septembre 1968 (1969)

    Google Scholar 

  • M.G. Huck, B. Klepper, H.M. Taylor, Diurnal variations in root diameter. Plant Physiol. 45(4), 529 (1970)

    Article  CAS  Google Scholar 

  • N. Hudson, Field measurement of soil erosion and runoff, Food & Agriculture Org (1993)

    Google Scholar 

  • T. Iserloh, J.B. Ries, J. Arnáez, C. Boix-Fayos, V. Butzen, A. Cerdà, M.T. Echeverría, J. Fernández-Gálvez, W. Fister, C. Geißler, European small portable rainfall simulators: a comparison of rainfall characteristics. Catena 110(11), 100–112 (2013a)

    Article  Google Scholar 

  • T. Iserloh, J.B. Ries, A. Cerdà, M.T. Echeverría, W. Fister, C. Geißler, N.J. Kuhn, F.J. León, P. Peters, M. Schindewolf, Comparative measurements with seven rainfall simulators on uniform bare fallow land. Z. Geomorphol. 57(3), 11–26 (2013b)

    Article  Google Scholar 

  • A.J. Jakeman, G.M. Hornberger, How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 29(8), 2637–2649 (1993)

    Article  Google Scholar 

  • C. Johnson, N. Gordon, Runoff and erosion from rainfall simulator plots on sagebrush rangeland. Trans. ASAE 31(2), 421–427 (1988)

    Article  Google Scholar 

  • W. Johnson, C. Niederhof, Some relationships of plant cover to run-off, erosion, and infiltration on granitic soils. J. For. 39(10), 854–858 (1941)

    Google Scholar 

  • T.J. Ju, L.I.U. Puling, X.U. Xuexuan, W. Shuanquan, S.H.I. Xinhe, Experimental study on runoff and sediment process in primary-lands in loess hilly regions under different rainfall conditions. J. Sediment Res. 4, 65–71 (2007)

    Google Scholar 

  • Y. Kavdır, A.J.M. Smucker, Soil aggregate sequestration of cover crop root and shoot-derived nitrogen. Plant Soil 272(1–2), 263–276 (2005)

    Article  CAS  Google Scholar 

  • A.A.H. Khan, C.K. Ong, Design and calibration of tipping bucket system for field runoff and sediment quantification. Paper presented at J. Soil Water Conserv. (1997)

    Google Scholar 

  • P.I.A. Kinnell, The effect of kinetic-energy of excess rainfall on soil loss from non-vegetated plots. Aust. J. Soil Res. 21(4), 445–453 (1983)

    Article  Google Scholar 

  • P. Kinnell, The IXEA index: an index with the capacity to give more direct consideration of hydrology in the USLE modelling environment. J. Soil Water Conserv. 50, 507–512 (1995)

    Google Scholar 

  • P.I.A. Kinnell, A review of the design and operation of runoff and soil loss plots. Catena 145, 257–265 (2016)

    Article  Google Scholar 

  • Kinnell, P. I. A., K. C. Mcgregor, and C. J. Rosewell (1994), The IXEA index as an alternative to the El30 erosivity index, 37(5), 1449-1456.

    Google Scholar 

  • G. Kite, in The SLURP Model, ed. By Singh. Computer Models of Watershed Hydrology (1995)

    Google Scholar 

  • A.N. Kostiakov, On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration, Trans. 6th Cong. International. Soil Science, Russian Part A, 17–21 (1932)

    Google Scholar 

  • B. Kothyari, P. Verma, B. Joshi, U. Kothyari, Rainfall–runoff-soil and nutrient loss relationships for plot size areas of Bhetagad watershed in Central Himalaya, India. J. Hydrol. 293(1), 137–150 (2004)

    Article  CAS  Google Scholar 

  • N. Kouwen, S.F. Mousavi, V.P. Singh, D.K. Frevert, WATFLOOD/SPL9 hydrological model & flood forecasting system. Mathematical Models of Large Watershed Hydrology (2002)

    Google Scholar 

  • N.J. Kuhn, P. Greenwood, W. Fister, Use of field experiments in soil erosion research, 175–200 (2014)

    Google Scholar 

  • R. Lei, Effect of a larix principis-rupprechtii forestplantation on soil in middle zone of south-facingslope of the Qinling mountains. Sci Silvae Sin. (1997)

    Google Scholar 

  • T. Lei, W. Xia, J. Zhao, Z. Liu, Q. Zhang, Method for measuring velocity of shallow water flow for soil erosion with an electrolyte tracer. J. Hydrol. 301(1–4), 139–145 (2005)

    CAS  Google Scholar 

  • T.W. Lei, C. Ruiyuan, J. Zhao, X.N. Shi, L. Lin, An improved method for shallow water flow velocity measurement with practical electrolyte inputs. J. Hydrol. 390(1–2), 45–56 (2010)

    Article  Google Scholar 

  • J. Leonard, P. Andrieux, Infiltration characteristics of soils in Mediterranean vineyards in Southern France. Catena 32(3), 209–223 (1998)

    Article  Google Scholar 

  • D.F. Levia, E.E. Frost, A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. (Elsevier B.V., 2003), pp. 1–29

    Article  CAS  Google Scholar 

  • Y. Li, X. Xu, X. Zhu, Preliminary-study on mechanism of plant-roots to increase soil antiscouribility on the Loess Plateau. Sci. China Ser. B: Chem. 35(9), 1085–1092 (1992)

    Google Scholar 

  • M. Li, W. Yao, Z. Li, Progress of the effect of grassland vegetation for conserving soil and water on loess plateau. Adv. Earth Sci. 20(1), 74–80 (2005)

    CAS  Google Scholar 

  • X.Y. Li, L.Y. Liu, S.Y. Gao, et al., Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China[J]. Agric. For. Meteorol. 148(10), 1501–1507 (2008)

    Article  Google Scholar 

  • C. Li, D.X. Ren, G.X. Wang, H.U. Hong-Chang, L.I. Tai-Bing, G.S. Liu, Analysis of artificial precipitation interception over two meadow species on Qinghai-Tibet Plateau. Adv. Water Sci. 20(6), 769–774 (2009)

    CAS  Google Scholar 

  • C.J. Li, G.X. Wang, T.X. Mao, Rainfall interception by swamp meadow and alpine meadow and its seasonal distribution pattern on the Qinghai-Tibet Plateau, China. Adv. Mater. Res. 610–613, 2675–2682 (2012)

    Article  Google Scholar 

  • H. Lieth, R.H. Whittaker, Primary Productivity of the Biosphere (Springer-Verlag, New York, 1975), p. 274

    Book  Google Scholar 

  • T.E. Link, M. Unsworth, D. Marks, The dynamics of rainfall interception by a seasonal temperate rainforest. Agric. For. Meteorol. 124(3), 171–191 (2004)

    Article  Google Scholar 

  • X. Liu, Q. Wu, H. Zhao, The vertical interception function of forest vegetation and soil and water conservation. Res. Soil Water Conserv. 1(3), 8–13 (1994)

    CAS  Google Scholar 

  • H. Liu, W. Cao, X. Wang, Response of water and sediment to land use in watershed of Losses plateau. Agric. Res. Arid Areas. 28(2), 237–242 (2010)

    Google Scholar 

  • Y. Liu, Q. Wang, T. Yang, J. Lv, G. Zhao, Study on interception characteristics of different plants. J. Soil Water Conserv, 29(3), (2015)

    Google Scholar 

  • P. Llorens, F. Domingo, Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 335(1–2), 37–54 (2007)

    Article  Google Scholar 

  • P. Llorens, F. Gallart, A simplified method for forest water storage capacity measurement. J. Hydrol. 240(1), 131–144 (2000)

    Article  Google Scholar 

  • D. Love, S. Uhlenbrook, G. Corzo-Perez, S. Twomlow, P. van der Zaag, Rainfall–interception–evaporation–runoff relationships in a semi-arid catchment, northern Limpopo basin, Zimbabwe. Hydrol. Sci. J. 55(5), 687–703 (2010)

    Article  Google Scholar 

  • Y. Luo, Z. Ouyang, G. Yuan, D. Tang, X. Xie, Evaluation of macroscopic root water uptake models using lysimeter data. Trans. ASAE 46(3), 625 (2003)

    Google Scholar 

  • F.P. Lyford, H.K. Qashu, Infiltration rates as affected by desert vegetation. Water Resour. Res. 5(6), 1373–1376 (1969)

    Article  Google Scholar 

  • M. Mahmoodabadi, A. Cerdà, WEPP calibration for improved predictions of interrill erosion in semi-arid to arid environments. Geoderma 204–205(4), 75–83 (2013)

    Article  Google Scholar 

  • O.J. Manfroi, K. Kuraji, M. Suzuki, N. Tanaka, T. Kume, M. Nakagawa, T.O. Kumagai, T. Nakashizuka, Comparison of conventionally observed interception evaporation in a 100-m 2 subplot with that estimated in a 4-ha area of the same Bornean lowland tropical forest. J. Hydrol. 329(1–2), 329–349 (2006)

    Article  Google Scholar 

  • B.A. Marsh, Measurement of length in random arrangements of lines. J. Appl. Ecol. 8(1), 265–267 (1971)

    Article  Google Scholar 

  • R.B. Marston, Ground cover requirements for summer storm runoff control on aspen sites in northern Utah. J. For. 50(4), 303–307 (1952)

    Google Scholar 

  • J. Martinec, Snowmelt-runoff model for stream flow forecasts. Iwa Publish. 6, 145–154 (1975)

    Google Scholar 

  • W.J. Massman, The derivation and validation of a new model for the interception of rainfall by forests. Agric. Meteorol. 28(3), 261–286 (1983)

    Article  Google Scholar 

  • C.M. Mathieu, F.O. Pieltain, Analyse physique des sols (1998)

    Google Scholar 

  • W.C. Mayaki, I.D. Teare, L.R. Stone, Top and root growth of irrigated and nonirrigated soybeans. Crop Sci. 16(1), 92–94 (1976)

    Article  Google Scholar 

  • C. Mayerhofer, G. Meißl, K. Klebinder, B. Kohl, G. Markart, Comparison of the results of a small-plot and a large-plot rainfall simulator – effects of land use and land cover on surface runoff in Alpine catchments. Catena 156, 184–196 (2017)

    Article  Google Scholar 

  • J.J. Mcdonnell, M. Bonell, M.K. Stewart, A.J. Pearce, Deuterium variations in storm rainfall: implications for stream hydrograph separation. Water Resour. Res. 26(3), 455–458 (1990)

    Article  CAS  Google Scholar 

  • M. McLeod, D. MacLeod, H. Daniel, The effect of degradation of phalaris+ white clover pasture on soil water regimes of a Brown Chromosol on the Northern Tablelands of NSW, Australia. Agric. Water Manag. 82(3), 318–342 (2006)

    Article  Google Scholar 

  • D.W. Meals, D.C. Braun, Demonstration of methods to reduce E. coli runoff from dairy manure application sites. J. Environ. Qual. 35(4), 1088–1100 (2006)

    Article  CAS  Google Scholar 

  • F.M. Melhuish, A precise technique for measurement of roots and root distribution in soils. Ann. Bot. 32(125), 15–22 (1968)

    Google Scholar 

  • T. Merzer, The effects of different vegetative cover on the local hydrological balance of a semi arid afforestation. Albert Katz International School for Desert Studies (2007)

    Google Scholar 

  • L. Meyer, Rainfall simulators for soil erosion research (1994)

    Google Scholar 

  • L.D. Meyer, D.L. Mccune, Rainfall simulator for runoff plots (1958)

    Google Scholar 

  • D.G. Miralles, J.H. Gash, T.R.H. Holmes, R.A.M. de Jeu, A.J. Dolman, Global canopy interception from satellite observations. J. Geophys. Res. 115(D16), D16122 (2010)

    Article  Google Scholar 

  • S.K. Mishra, V.P. Singh, Soil conservation service curve number (SCS-CN) methodology. Springer Science & Business Media (2013)

    Google Scholar 

  • A. Mohammed, Rangeland condition at southern West Bank. Hebron Univ. Res. J. 2, 42–54 (2005)

    Google Scholar 

  • R.D. Moore, Tracing runoff sources with deuterium and oxygen-88 during spring melt in a headwater catchment, southern Laurentians, Quebec. J. Hydrol. 112(1), 135–148 (1989)

    Article  CAS  Google Scholar 

  • R.R.C. Morgan, R.J. Rickson, Slope Stabilization and Erosion Control. A Bioengineering Approach (E & EN Spon, London, 1995)

    Google Scholar 

  • G. Morin, V.P. Singh, D.K. Frevert, CEQUEAU hydrological model. Cequeau Hydrological Model (2002), pp. 507–576

    Google Scholar 

  • J.P.M. Mulder, Simulating Interception Loss Using Standard Meteorological Data (Springer Netherlands, 1985), pp. 177–196

    Google Scholar 

  • C. Muñoz-Robles, N. Reid, M. Tighe, S.V. Briggs, B. Wilson, Soil hydrological and erosional responses in patches and inter-patches in vegetation states in semi-arid Australia. Geoderma 160(3), 524–534 (2011)

    Article  Google Scholar 

  • C.K. Mutchler, Runoff plot design and installation for soil erosion studies (1963)

    Google Scholar 

  • C.K. Mutchler, C.E. Murphree, K.C. Mcgregor, R. Lal, Laboratory and field plots for soil erosion studies. Soil Erosion Res. Methods 9, 36 (1988)

    Google Scholar 

  • A. Muzylo, P. Llorens, F. Valente, J.J. Keizer, F. Domingo, J.H.C. Gash, A review of rainfall interception modelling. J. Hydrol. 370(1), 191–206 (2009)

    Article  Google Scholar 

  • G. Negi, H. Rikhari, S. Garkoti, The hydrology of three high-altitude forests in Central Himalaya, India: a reconnaissance study. Hydrol. Process. 12(2), 343–350 (1998)

    Article  Google Scholar 

  • T. Nehls, Y.N. Rim, G. Wessolek, Technical note on measuring run-off dynamics from pavements using a new device: the weighable tipping bucket. Hydrol. Earth Syst. Sci. 15(15), 1379 (2011)

    Article  Google Scholar 

  • S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams, K.W. King, Soil and water assessment tool theoretical documentation: version 2000, GSWRL Report 02-01, BRC Report 02-05, TR-191. College Station, Texas: Texas Water Resources Institute (2002)

    Google Scholar 

  • J. Neris, C. Jiménez, J. Fuentes, G. Morillas, M. Tejedor, Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). Catena 98(6), 55–62 (2012)

    Article  Google Scholar 

  • E.I. Newman, A Method of Estimating the Total Length of Root in a Sample. J. Appl. Ecol. 3(1), 139–145 (1966)

    Article  Google Scholar 

  • A.R. Nordin, Eco-Engineering Practices in Malaysia. Ph.D. Thesis, University of New castle Upon Tyne, Glasgow, 1995

    Google Scholar 

  • F.L. Ogden, B.A. Watts, Saturated area formation on nonconvergent hillslope topography with shallow soils: a numerical investigation. Water Resour. Res. 36(7), 1795–1804 (2000)

    Article  Google Scholar 

  • T. Oztas, A. Koc, B. Comakli, Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands. J. Arid Environ. 55(1), 93–100 (2003)

    Article  Google Scholar 

  • R.W. Pearson, Significance of rooting pattern to crop production and some problems of root research, Proc. Plant Root Environ. (1974)

    Google Scholar 

  • H. Peng et al., Canopy interception by a spruce forest in the upper reach of Heihe River basin, Northwestern China. Hydrol. Process. 28(4), 1734–1741 (2014)

    Article  Google Scholar 

  • C. Perrin, C. Michel, V. Andréassian, Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279(1–4), 275–289 (2003)

    Article  Google Scholar 

  • J.R. Philip, The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 83(5), 345–358 (1957a)

    Article  CAS  Google Scholar 

  • J.R. Philip, The theory of infiltration: 4. Sorptivity and algebraic infiltration equations. Soil Sci. 84(3), 257–264 (1957b)

    Article  Google Scholar 

  • M. Pidwirny, Interception, Stemflow, Canopy Drip, and Throughfall Fundamentals of Physical Geography, 2nd edn. (2006)

    Google Scholar 

  • A.F. Pillsbury, R.E. Pelishek, J.F. Osborn, T.E. Szuszkiewicz, Effects of vegetation manipulation on the disposition of precipitation on chaparral-covered watersheds. J. Geophys. Res. 67(2), 695–702 (1962)

    Article  Google Scholar 

  • W.T. Pinson, D.C. Yoder, J.R. Buchanan, W.C. Wright, J.B. Wilkerson, Design and evaluation of an improved flow divider for sampling runoff plots. Appl. Eng. Agric. 20(4), 433 (2004)

    Article  Google Scholar 

  • O. Planchon, N. Silvera, R. Gimenez, D. Favis-Mortlock, J. Wainwright, Y.L. Bissonnais, G. Govers, An automated salt-tracing gauge for flow-velocity measurement. Earth Surf. Process. Landf. 30(7), 833–844 (2005)

    Article  Google Scholar 

  • J.W. Porter, T.A. Mcmahon, A model for the simulation of streamflow data from climatic records. J. Hydrol. 13, 297–324 (1971)

    Article  Google Scholar 

  • L.J. Puckett, Spatial variability and collector requirements for sampling throughfal. Can. J. For. Res. 21(11), 1581–1588 (1991)

    Article  CAS  Google Scholar 

  • J.N. Quinton, G. Edwards, R. Morgan, The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use Manag. 13(3), 143–148 (1997)

    Article  Google Scholar 

  • J.C. Refshaard, B. Storm, MIKE SHE, in Computer Models of Watershed Hydrology (1995)

    Google Scholar 

  • D.C. Reicosky, R.J. Millington, D.B. Peters, A comparison of three methods for estimating root length. Agron. J. 62(4), 451–453 (1970)

    Article  Google Scholar 

  • K.D. Reid, B.P. Wilcox, D.D. Breshears, L. MacDonald, Runoff and erosion in a piñon–juniper woodland influence of vegetation patches. Soil Sci. Soc. Am. J. 63(6), 1869–1879 (1999)

    Article  CAS  Google Scholar 

  • W.D. Reynolds, D.E. Elrick, Determination of hydraulic conductivity using a tension infiltrometer. J. Infect. Dis. 163(4), 921–922 (1991)

    Article  Google Scholar 

  • M. Robinson, S.J. Grant, J.A. Hudson, Measuring rainfall to a forest canopy: an assessment of the performance of canopy level raingauges. Hydrol. Earth Syst. Sci. 8(3), 327–333 (2004)

    Article  Google Scholar 

  • C.C. Romero, L. Stroosnijder, G.A. Baigorria, Interrill and rill erodibility in the northern Andean highlands. Catena 70(2), 105–113 (2007)

    Article  Google Scholar 

  • M.J.M. Romkens, The soil erodibility factor: a perspective (1985)

    Google Scholar 

  • L.A. Rossman, Storm Water Management Model User’s Manual (2009)

    Google Scholar 

  • V.G. Rumynin, Surface Runoff Generation, Vertical Infiltration and Subsurface Lateral Flow (Springer International Publishing, 2015)

    Google Scholar 

  • J.K. Ruprecht, N.J. Schofield, Analysis of streamflow generation following deforestation in southwest Western Australia. J. Hydrol. 105(1–2), 1–17 (1989)

    Article  Google Scholar 

  • A.J. Rutter, K.A. Kershaw, P.C. Robins, A.J. Morton, A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 9(71), 367–384 (1971)

    Article  Google Scholar 

  • R. Sarkar, S. Dutta, Field investigation and modeling of rapid subsurface stormflow through preferential pathways in a vegetated hillslope of northeast India. J. Hydrol. Eng. 17(2), 333–341 (2011)

    Article  Google Scholar 

  • R. Sarkar, S. Dutta, S. Panigrahy, Characterizing overland flow on a preferential infiltration dominated hillslope: case study. J. Hydrol. Eng. 13(7), 563–569 (2008)

    Article  Google Scholar 

  • J.J. Schuurman, M.A.J. Goedewaagen, Methods for the examination of root systems and roots (1965)

    Google Scholar 

  • R. Schwartz, R. Baumhardt, S. Evett, Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil Tillage Res. 110(2), 221–229 (2010)

    Article  Google Scholar 

  • M. Seeger, Uncertainty of factors determining runoff and erosion processes as quantified by rainfall simulations. Catena 71(1), 56–67 (2007)

    Article  Google Scholar 

  • Z.J. Shi, Y.H. Wang, L.H. Xu, X. Wei, P.T. Yu, G. Hao, L.Y. Zhang, Hydrological functions of litter layer of typical forest types in the Liupan Mountains of Ningxia, northwestern China. J. Beijing For. Univ. 31(1), 91–99 (2009)

    Google Scholar 

  • M. Silgram, D.R. Jackson, A. Bailey, J. Quinton, C. Stevens, Hillslope scale surface runoff, sediment and nutrient losses associated with tramline wheelings. Earth Surf. Process. Landf. 35(6), 699–706 (2010)

    Google Scholar 

  • I.C. Silva, T. Okumura, Throughfall, stemflow and interception loss in a mixed white oak forest (Quercus serrata Thunb.). J. For. Res. 1(3), 123–129 (1996)

    Article  Google Scholar 

  • M.J. Singer, Y. Le Bissonnais, Importance of surface sealing in the erosion of some soils from a Mediterranean climate. Geomorphology 24(1), 79–85 (1998)

    Article  Google Scholar 

  • J.S. Singh, A.N. Pandey, P.C. Pathak, A hypothesis to account for the major pathway of soil loss from Himalaya. Environ. Conserv. 10(4), 343–345 (1983)

    Article  Google Scholar 

  • M.V.K. Sivakumar, H.M. Taylor, R.H. Shaw, Top and root relations of field-grown soybeans. Agron. J. 69(3), 470–473 (1977)

    Article  Google Scholar 

  • M.G. Sklash, R.N. Farvolden, The role of groundwater in storm runoff. J. Hydrol. 43(1), 45–65 (1979)

    Article  CAS  Google Scholar 

  • M.G. Sklash, R.N. Farvolden, P. Fritz, Erratum: A conceptual model of watershed response to rainfall develop. Can. J. Earth Sci. 63(13), 1016–1020 (1976)

    Google Scholar 

  • K.R.J. Smettem, B.E. Clothier, Measuring unsaturated sorptivity and hydraulic conductivity using multiple disc permeameters. Eur. J. Soil Sci. 40(3), 563–568 (1989)

    Article  Google Scholar 

  • A.L. Smit, J.F.C.M. Sprangers, P.W. Sablik, J. Groenwold, Automated measurement of root length with a three-dimensional high-resolution scanner and image analysis. Plant Soil 158(1), 145–149 (1994)

    Article  Google Scholar 

  • R. Smith, Infiltration envelope-results from a theoretical infiltrometer. Paper presented at Transactions-American Geophysical Union, Amer Geophysical Union 2000 Florida Ave NW, Washington, DC 20009 (1971)

    Google Scholar 

  • H.L. Smith, L.B. Leopold, Infiltration studies in the Pecos River watershed, New Mexico and Texas. Soil Sci. 53(3), 195–204 (1942)

    Article  CAS  Google Scholar 

  • H.d. Snyman, C. Du Preez, Rangeland degradation in a semi-arid South Africa – II: influence on soil quality. J. Arid Environ. 60(3), 483–507 (2005)

    Article  Google Scholar 

  • S. Soto-Schönherr, A. Iroumé, How much water do Chilean forests use? A review of interception losses in forest plot studies. Hydrol. Process. 30(25), 4674–4686 (2016)

    Article  Google Scholar 

  • S. Strohmeier, G. Laaha, H. Holzmann, A. Klik, Magnitude and occurrence probability of soil loss: a risk analytical approach for the plot scale for two sites in Lower Austria. Land Degrad. Dev. 27(1), 43–51 (2016)

    Article  Google Scholar 

  • M. Sugawara, I. Watanabe, E. Ozaki, Y. Katsuyama, Tank model programs for personal computer and the way to use (second report). Rev. Res. Disaster Prev. 113, 1–200 (1986)

    Google Scholar 

  • P. Suwardji, P.L. Eberbach, Seasonal changes of physical properties of an Oxic Paleustalf (Red Kandosol) after 16 years of direct drilling or conventional cultivation. Soil Tillage Res. 49(1–2), 65–77 (1998)

    Article  Google Scholar 

  • K. Suzuki, Y. Kodama, T. Yamazaki, K. Kosugi, Y. Nakai, Snow accumulation on evergreen needle-leaved and deciduous broad-leaved trees. Boreal Environ. Res. 13(5), 403–416 (2008)

    Google Scholar 

  • Y. Tang, Research on soil erosion characteristics and vegetation cover and management factor C value of slope farmland in purple hilly region, 79 (2012)

    Google Scholar 

  • D. Tennant, A test of a modified line intersect method of estimating root length. J. Ecol. 63(3), 995–1001 (1975)

    Article  Google Scholar 

  • S. Thompson, C. Harman, P. Heine, G. Katul, Vegetation-infiltration relationships across climatic and soil type gradients. J. Geophys. Res. Biogeosci. 115(G2), 1–12 (2010a)

    Article  Google Scholar 

  • S.E. Thompson, G.G. Katul, A. Porporato, Role of microtopography in rainfall-runoff partitioning: an analysis using idealized geometry. Water Resour. Res. 46(7), W07520 (2010b)

    Article  Google Scholar 

  • J.H. Titus, R.S. Nowak, S.D. Smith, Soil resource heterogeneity in the Mojave Desert. J. Arid Environ. 52(3), 269–292 (2002)

    Article  Google Scholar 

  • B. Torssell, J.E. Begg, C.W. Rose, G.F. Byrne, Stand morphology of Townsville lucerne (Stylosanthes humilis): seasonal growth and root development. Aust. J. Exp. Agric. 8(34), 533–543 (1968)

    Article  Google Scholar 

  • P. Troch, E.V. Loon, A. Hilberts, Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Adv. Water Resour. 25(6), 637–649 (2002)

    Article  Google Scholar 

  • A. Vacca, S. Loddo, G. Ollesch, R. Puddu, G. Serra, D. Tomasi, A. Aru, Measurement of runoff and soil erosion in three areas under different land use in Sardinia (Italy). Catena 40(1), 69–92 (2000)

    Article  Google Scholar 

  • A.R. Vaezi, S.H.R. Sadeghi, H.A. Bahrami, M.H. Mahdian, Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 97(3–4), 414–423 (2008)

    Article  Google Scholar 

  • T. Vogel, M. Sanda, J. Dusek, M. Dohnal, J. Votrubova, Using oxygen-18 to study the role of preferential flow in the formation of hillslope runoff. Vadose Zone J. 9(2), 252–259 (2010)

    Article  CAS  Google Scholar 

  • L.X. Wang, Z.Q. Zhang, Advances in the study of ecohydrological effects from vegetation changes, World Forestry Research (6), 10 (1998)

    Google Scholar 

  • G. Wang, Y.E.A. Zhang, Ecohydrology in Cold Regions: Theory and Practice (Science Press, Beijing, 2016)

    Google Scholar 

  • X.P. Wang, Y. Cui, Y.X. Pan, X.R. Li, Z. Yu, M. Young, Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems. J. Hydrol. 358(1), 134–143 (2008)

    Article  Google Scholar 

  • A.W. Warrick, Soil Water Dynamics (Oxford University Press, New York, 2003)

    Google Scholar 

  • F. Watanabe, Y. Kobayashi, S. Suzuki, T. Hotta, S. Takahashi Estimating the volume of surface runoff from in situ measured soil sorptivity, 沙漠研究: 日本沙漠学会誌, 22 (2012)

    Google Scholar 

  • F. Weller, A method for studying the distribution of absorbing roots of fruit trees. Exp. Agric. 7(4), 351–362 (1971)

    Article  Google Scholar 

  • C. Wels, R.J. Cornett, B.D. Lazerte, Hydrograph separation: a comparison of geochemical and isotopic tracers. J. Hydrol. 122(1–4), 253–274 (1991)

    Article  Google Scholar 

  • I. White, K.M. Perroux, Estimation of unsaturated hydraulic conductivity from field sorptivity measurements. Soil Sci. Soc. Am. J. 53(2), 324–329 (1989)

    Article  Google Scholar 

  • L.K. Wiersum, The relationship of the size and structural rigidity of pores to their penetration by roots. Plant Soil 9(1), 75–85 (1957)

    Article  Google Scholar 

  • S.A. Wilde, G.K. Voigt, Absorption-transpiration quotient of nursery stock. J. For. 47(8), 643–645 (1949)

    Google Scholar 

  • G. Willgoose, H. Perera, A simple model of saturation excess runoff generation based on geomorphology, steady state soil moisture. Water Resour. Res. 37(1), 147–156 (2001)

    Article  Google Scholar 

  • W.H. Wischmeier, J.V. Mannering, Relation of soil properties to its erodibility. Proc. Soil Sci. Soc. Am. 33(1), 131–137 (1969)

    Article  Google Scholar 

  • L. Woodward, Infiltration-capacities of some plant-soil complexes on Utah range watershed-lands. Eos. Trans. AGU 24(2), 468–475 (1943)

    Article  Google Scholar 

  • Q. Wu, Y. Liu, Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Reg. Sci. Technol. 38(2–3), 85–92 (2004)

    Google Scholar 

  • Q.B. Wu, B. Shi, Y.Z. Liu, Research on the interaction of permafrost and highway along Qinghai-Tiber highway. (2002)

    Google Scholar 

  • H.Y. Xi, F. Qi, C. Zhongqiang, C. Yufei, S.I. Jianhua, S.U. Yonghong, G.U.O. Rui, Permeability characteristics of soils and their dependence on soil conditions in Ejina Oasis. J. Glaciol. Geocryol. 30(6), 976–982 (2008)

    Google Scholar 

  • M. Xie, H. Zhang, Y. Wang, Study on the influence of soil and water conservation measures on the speciality of run-off production and its flowing and on the starting conditions of debris flow occured by hydrodynamics. J. Beijing For. Univ. (1994)

    Google Scholar 

  • L.H. Xu, Z.J. Shi, Y.H. Wang, W. Xiong, P.T. Yu, Canopy interception characteristics of main vegetation types in Liupan Mountains of China. Chin. J. Appl. Ecol. 21(10), 2487–2493 (2010)

    Google Scholar 

  • M. Yamashita, A. Ichikawa, F. Satoh, H. Shibata, Quantitative approach and problems of river hydrological simulation models. Jpn. J. Limnol. 67(3), 267–280 (2006)

    Article  CAS  Google Scholar 

  • Y. Yang, Y. Mo, Z. Wang, Z. Liao, J. Deng, X. Zhang, Experimental study on anti-water erosion and shear strength of soil-root composite. J. China Agric. Univ. (1996)

    Google Scholar 

  • W.-Y. Yao, P.-Q. Xiao, Z.-Z. Shen, C.-X. Yang, Responses of runoff process and threshold of sediment generation for different vegetation-covered plot. Shuili Xuebao (J. Hydraul. Eng.) 42(12), 1438–1444 (2011)

    Google Scholar 

  • L. Yi, S. Minǵan, Experimental study on influence factors of rainfall and infiltration under artificial grassland coverage. Trans. Chin. Soc. Agric. Eng. 2007(3) (2007)

    Google Scholar 

  • B. Yu, C.W. Rose, K.J. Coughlan, B. Fentie, Plot-scale rainfall-runoff characteristics and modeling at six sites in Australia and South East Asia. Trans. ASAE 40(5), 1295–1303 (1997)

    Article  Google Scholar 

  • X. Yu, X. Zhang, J. Li, M. Zhang, Y. Xie, Effects of vegetation cover and precipitation on the process of sediment produced by erosion in a small watershed of loess region. Acta Ecol. Sin. 26(1), 1–8 (2006)

    Article  CAS  Google Scholar 

  • X.X. Yu, Y.Q. Geng, L.L. Niu, Y.J. Yue, Effect of sampling scale on spatial variability of forest soil nutrient in typical watershed with Miyun Chaoguan west watershed for example. Sci. Silvae Sin. 46(10), 162–166 (2010)

    CAS  Google Scholar 

  • Y. Yu, W. Loiskandl, H.P. Kaul, M. Himmelbauer, W. Wei, L. Chen, G. Bodner, Estimation of runoff mitigation by morphologically different cover crop root systems. J. Hydrol. 538, 667–676 (2016)

    Article  Google Scholar 

  • G.H. Zhang, B.Y. Liu, M.A. Nearing, C.H. Huang, K.L. Zhang, Soil detachment by shallow flow. Trans. ASAE Am. Soc. Agric. Eng. 45(2), 351–357 (2002)

    Google Scholar 

  • B. Zhang, Y.-s. Yang, H. Zepp, Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey Plinthudult in southeastern China. Catena 57(1), 77–90 (2004)

    Article  Google Scholar 

  • Z.M. Zhang, Y.U. Xin-Xiao, J.Z. Niu, L.U. Shao-Wei, W.F. Sun, X.P. Liu, Y. Zhang, Ecohydrological functions of litter on different forest stands. J. Soil Water Conserv. 19(3), 139–143 (2005)

    Google Scholar 

  • X. Zhang, L. Luo, W. Jing, S. Wang, R. Wang, Z. Che, Study on the distribution effect of canopy interception of Picea crassifolia forest in Qilian Mountains. J. Mt. Sc. (2007)

    Google Scholar 

  • G.H. Zhang, R.T. Luo, Y. Cao, R.C. Shen, X.C. Zhang, Correction factor to dye-measured flow velocity under varying water and sediment discharges. J. Hydrol. 389(1–2), 205–213 (2010a)

    Article  Google Scholar 

  • G.H. Zhang, M.K. Tang, X.C. Zhang, Temporal variation in soil detachment under different land uses in the Loess Plateau of China. Earth Surf. Process. Landf. 34(9), 1302–1309 (2010b)

    Article  Google Scholar 

  • L. Zhang, J. Wang, Z. Bai, C. Lv, Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 128, 44–53 (2015)

    Article  Google Scholar 

  • X. Zhang, W. Zhao, Y. Liu, X. Fang, Q. Feng, The relationships between grasslands and soil moisture on the Loess Plateau of China: a review. Catena 145, 56–67 (2016)

    Article  Google Scholar 

  • R.J. Zhao, The Xinanjiang model applied in China. J. Hydrol. 135(1–4), 371–381 (1992)

    Google Scholar 

  • X.N. Zhao, F.Q. Wu, Developments and reviews of soil infiltration research. J. Northwest For. Univ. 19(1), 42–45 (2004)

    Google Scholar 

  • S.L. Zhao, E.C. Dorsey, S.C. Gupta, J.F. Moncrief, D.R. Huggins, Automated water sampling and flow measuring devices for runoff and subsurface drainage. J. Soil Water Conserv. 56(4), 299–306 (2001)

    Google Scholar 

  • M. Zhao, W. Yao, J. Wang, P. Xiao, Experimental study on influence of vegetation coverage to soil infiltration and runoff-producing of the Loess Plateau region. Soil Water Conserv. China 6, 3 (2015)

    Google Scholar 

  • Y. Zhou, Vegetation and erosion control: exploration on basic principle of slope engineering. Chin. J. Appl. Ecol. 11(2), 297 (2000)

    CAS  Google Scholar 

  • X. Zhou, Y. Wang, Q. Liu, Adaptability of four infiltration formulas on fluvo-aquic. Soil J. Irrig. Drain. 34(8), 5 (2015)

    CAS  Google Scholar 

  • X. Zhu, M. Ren, Formation process and regulation measures of Loess Plateau in China. Soil Water Conserv. China 119(2), 8 (1992)

    Google Scholar 

  • B. Zhu, Z. Li, P. Li, Z. You, Effect of grass coverage on sediment yield of rain on slope. Acta Pedol. Sin. 47(3), 401–407 (2010)

    Google Scholar 

  • B. Zimmermann, A. Zimmermann, R.M. Lark, H. Elsenbeer, Sampling procedures for throughfall monitoring: a simulation study. Water Resour. Res. 46(1), W01503 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (41430748 and 41661144025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinsheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guo, Y., Zhang, Y., Zhang, T., Wang, K., Ding, J., Gao, H. (2018). Surface Runoff. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_8-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_8-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Surface Runoff
    Published:
    17 August 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_8-2

  2. Original

    Surface Runoff
    Published:
    22 June 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_8-1