Skip to main content

Subsurface Flow

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 316 Accesses

Abstract

Subsurface flow refers to any flow below the surface of the ground which includes low flow (base flow) and quick flow (subsurface stormflow). Subsurface flow has been attracting attention as an important topic of research in recent years because of its crucial role in water cycle calculation, flood prediction, slope stability, nutrient recycling, and soil–water–vegetation exchange processes. In early subsurface flow research, trenches (or pits) combined with hydrometric approaches are the main observation techniques. In recent decades, great progress has been made on the source, pathway, and residence time of subsurface flow due to the application of tracer and geophysical techniques. However, there is yet no broad consensus on the responsible mechanisms that explain runoff processes in the ground. This chapter seeks to provide an overview of current research on subsurface flow. We first give a brief description of the basic concept of subsurface flow and base flow and then focus on the flow regimes, controlling factors, and monitor and model of subsurface stormflow. In the end of this chapter, future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • S.E. Allaire, S. Roulier, A.J. Cessna, Quantifying preferential flow in soils: a review of different techniques. J. Hydrol. 378(1–2), 179–204 (2009)

    Article  Google Scholar 

  • S.P. Anderson, W.E. Dietrich, D.R. Montgomery, R. Torres, M.E. Conrad, K. Loague, Subsurface flow paths in a steep, unchanneled catchment. Water Resour. Res. 33(12), 2637–2653 (1997)

    Article  Google Scholar 

  • A.E. Anderson, M. Weiler, Y. Alila, R.O. Hudson, Subsurface flow velocities in a hillslope with lateral preferential flow. Water Resour. Res. 45, W11407 (2009)

    Google Scholar 

  • D.A. Angers, J. Caron, Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42(1–2), 55–72 (1998)

    Article  Google Scholar 

  • T.C. Atkinson, Techniques for measuring subsurface flow on hillslopes, in Hillslope Hydrology, ed. by M. J. Kirkby (Wiley, Hoboken, 1978), pp. 73–78

    Google Scholar 

  • K. Beven, P. Germann, Macropores and water-flow in soils. Water Resour. Res. 18(5), 1311–1325 (1982)

    Article  Google Scholar 

  • T.P. Burt, M.C. Slattery, in Land Use and Land Cover Effects on Runoff Processes: Agricultural Effects, ed. by M. G. Anderson (Wiley, Hoboken, 2005), pp. 1805–1811

    Google Scholar 

  • J.M. Buttle, Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geogr. 18(1), 16–41 (1994)

    Article  Google Scholar 

  • J.M. Buttle, D.J. McDonald, Coupled vertical and lateral preferential flow on a forested slope. Water Resour. Res. 38(5), 18–1–18–16 (2002)

    Article  Google Scholar 

  • N. Christophersen, R.P. Hooper, Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resour. Res. 28(1), 99–107 (1992)

    Article  CAS  Google Scholar 

  • D.J. Daniels, Ground Penetrating Radar, 2nd edn. (Institution of Electrical Engineers, London, 1996)

    Google Scholar 

  • J.M. Detty, K.J. McGuire, Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour. Res. 46, W07525 (2010)

    Article  Google Scholar 

  • E.H. Du, C.R. Jackson, J. Klaus, J.J. McDonnell, N.A. Griffiths, M.F. Williamson, J.L. Greco, M. Bitew, Interflow dynamics on a low relief forested hillslope: lots of fill, little spill. J. Hydrol. 534, 648–658 (2016)

    Google Scholar 

  • T. Dunne, Hydrology mechanics, and geomorphic implications of erosion by subsurface flow. Geol. Soc. Am. 252, 1–28 (1990)

    Google Scholar 

  • A. Engler, Untersuchungen über den Einfluss des Waldes auf den Stand der Gewässer. Kommissionsverlag von Beer and Cie, Zürich, (1919), pp. 626. in Wieler et al. 2005.

    Google Scholar 

  • G.A. Fox, G.V. Wilson, The role of subsurface flow in hillslope and stream bank erosion: a review. Soil Sci. Soc. Am. J. 74(3), 717–733 (2010)

    Article  CAS  Google Scholar 

  • J. Freer, J.J. Mcdonnell, K.J. Beven, D. Brammer, D. Burns, R.P. Hooper, C. Kendal, Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchments. Hydrol. Process. 11, 1347–1352 (1997)

    Article  Google Scholar 

  • J. Freer, J.J. McDonnell, K.J. Beven, N.E. Peters, D.A. Burns, R.P. Hooper, B. Aulenbachand, C. Kendall, The role of bedrock topography on subsurface storm flow. Water Resour. Res. 38(12), 5–1–5–16 (2002)

    Article  Google Scholar 

  • J.E. Freera, H. McMillanb, J.J. McDonnell, K.J. Beven, Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. J. Hydrol. 291, 254–277 (2004)

    Article  Google Scholar 

  • R.A. Freeze, Role of subsurface flow in generating surface runoff 2, upstream source areas. Water Resour. Res. 8(5), 1272–1283 (1972)

    Article  Google Scholar 

  • K. Frohlich, W. Frohlich, H. Wittenberg, Determination of ground-water recharge by baseflow separation – regional analysis in Northeast China. 2nd international conference on flow regimes from international experimental and network data 221, 69–75 (1994)

    Google Scholar 

  • C. Fu, J. Chen, S. Zeng, Observation and analysis of rainfall-runoff characteristics in a coastal granite catchment in southern China. J. Hydrol. Eng. 17(1), 138–149 (2012)

    Article  Google Scholar 

  • D.P. Genereux, R.P. Hooper, Oxygen and hydrogen isotopes in rainfall-runoff studies, in Isotope Tracers in Catchment Hydrology, ed. by C. Kendall, J. J. McDonnell (Elsevier, Amsterdam, 1998), pp. 319–346

    Google Scholar 

  • H.H. Gerke, Preferential flow descriptions for structured soils. Soil Sci. Plant Nutr. 169(3), 382–400 (2006)

    Article  CAS  Google Scholar 

  • H.H. Gerke, M.T. Genuchten, A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29(2), 305–319 (1993)

    Article  CAS  Google Scholar 

  • M. Ghasemizade, M. Schirmer, Subsurface flow contribution in the hydrological cycle: lessons learned and challenges ahead-a review. Environ. Earth Sci. 69(2), 707–718 (2013)

    Article  Google Scholar 

  • M. Ghestem, R.C. Sidle, A. Stokes, The influence of plant root systems on subsurface flow: implications for slope stability. Bioscience 61(11), 869–879 (2011)

    Article  Google Scholar 

  • J.J. Gibson, T.W.D. Edwards, S.J. Birks, N.A. St Amour, W.M. Buhay, P. McEachern, B.B. Wolfe, D.L. Peters, Progress in isotope tracer hydrology in Canada. Hydrol. Process. 19(1), 303–327 (2005)

    Article  CAS  Google Scholar 

  • K.H. Gormally, M.S. McIntosh, A.N. Mucciardi, G.W. McCarty, Ground-penetrating radar detection and three-dimensional mapping of lateral macropores: II. Riparian application. Soil Sci. Soc. Am. J. 75(4), 1236 (2011)

    Article  CAS  Google Scholar 

  • C.B. Graham, R.A. Woods, J.J. McDonnell, Hillslope threshold response to rainfall: (1) a field based forensic approach. J. Hydrol. 393(1–2), 65–76 (2010)

    Article  Google Scholar 

  • R.B. Grayson, A.W. Western, F. Chiew, G. Bloschl, Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resour. Res. 33(12), 2897–2908 (1997)

    Article  Google Scholar 

  • W.H. Green, G.A. Ampt, Studies on soil physics. I. The flow of water and air through soils. J. Agric. Sci. 4, 1–24 (1911)

    Article  Google Scholar 

  • L. Guo, J. Chen, H. Lin, Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope. Water Resour. Res. 50(12), 9127–9147 (2014)

    Article  Google Scholar 

  • H. Haga, Y. Matsumoto, J. Matsutani, M. Fujita, K. Nishida, Y. Sakamoto, Flow paths, rainfall properties, and antecedent soil moisture controlling lags to peak discharge in a granitic unchanneled catchment. Water Resour. Res. 41, W12410 (2005)

    Article  Google Scholar 

  • M.H. Hendrickx, F. Markus, Uniform and preferential flow mechanisms in the vadose zone, in Conceptual Models of Flow and Transport in the Fractured Vadose Zone, ed. by P.A. Hsieh (National Academy Press, Washington, 2001), pp. 149–198

    Google Scholar 

  • J. Holden, Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection. Earth Surf. Process. Landf. 29(4), 437–442 (2004)

    Article  Google Scholar 

  • J. Hosang, Modeling preferential flow of water in soils – a two phase approach for field condition. Geoderma 58, 149–163 (1993)

    Article  Google Scholar 

  • J. Hu, D.J. Moore, S.P. Burns, R.K. Monson, Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Biol. 16(2), 771–783 (2010)

    Article  Google Scholar 

  • C.R. Hursh, E.F. Brater, Separating storm-hydrographs from small drainage areas into surface and subsurface flow. Transactions of the American Geophysical Union. 22, 863–871 (1941)

    Google Scholar 

  • S. Inamdar, in The Use of Geochemical Mixing Models to Derive Runoff Sources and Hydrologic Flow Paths, ed. by D. F. Levia (Springer, Dordrecht/Heidelberg/London/New York, 2011), pp. 163–181

    Google Scholar 

  • I.T. James, T.W. Waine, R.I. Bradley, J.C. Taylor, R.J. Godwin, Determination of soil type boundaries using electromagnetic induction scanning techniques. Biosyst. Eng. 86(4), 421–430 (2003)

    Article  Google Scholar 

  • N.J. Jarvis, A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci. 58(3), 523–546 (2007)

    Article  Google Scholar 

  • N. Jarvis, J. Koestel, M. Larsbo, Understanding preferential flow in the vadose zone: recent advances and future prospects. Vadose Zone J. 15(12), 1–11 (2016)

    Article  Google Scholar 

  • J.A. Jones, Soil piping and catchment response. Hydrol. Process. 24(12SI), 1548–1566 (2010)

    Article  Google Scholar 

  • G. Jost, G. Heuvelink, A. Papritz, Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma 128(3–4), 258–273 (2005)

    Article  Google Scholar 

  • P.M. Kienzler, Experimental study of subsurface stormflow formation combining tracer, hydrometric and geophysical techniques. Albert Ludwig University, Germany (2007)

    Google Scholar 

  • P.M. Kienzler, F. Naef, Subsurface storm flow formation at different hillslopes and implications for the ‘old water paradox’. Hydrol. Process. 22(1), 104–116 (2008)

    Article  CAS  Google Scholar 

  • K.J.S. Kung, Preferential flow in a sandy vadose zone. 1. Field observations. Geoderma 46, 51–58 (1990)

    Article  Google Scholar 

  • X.M. Lai, Z.W. Zhou, Q. Zhua, K.H. Liao, Comparing the spatio-temporal variations of soil water content and soil free water content at the hillslope scale. Catena 160, 366–375 (2018)

    Article  Google Scholar 

  • B. Lehner, P. Doll, J. Alcamo, T. Henrichs, F. Kaspar, Estimating the impact of global change on flood and drought risks in europe: a continental, integrated analysis. Clim. Chang. 75(3), 273–299 (2006)

    Article  Google Scholar 

  • X.Y. Li, Z. Yang, Y. Li, H. Lin, Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrol. Earth Syst. Sci. 13(7), 1133–1144 (2009)

    Article  Google Scholar 

  • X.Y. Li, H. Lin, H.H. Gerke, Frontiers in hydropedology: interdisciplinary research from soil architecture to the critical zone. Vadose Zone J. (2018). https://doi.org/10.2136/vzj2018.03.0045

  • H. Lin, Linking principles of soil formation and flow regimes. J. Hydrol. 393(1–2SI), 3–19 (2010)

    Article  Google Scholar 

  • H. Lin, X. Zhou, Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur. J. Soil Sci. 59(1), 34–49 (2008)

    Article  Google Scholar 

  • L. Luo, H. Lin, P. Halleck, Quantifying soil structure and preferential flow in intact soil using x-ray computed tomography. Soil Sci. Soc. Am. J. 72(4), 1058 (2008)

    Article  CAS  Google Scholar 

  • J.J. McDonnell, Where does water go when it rains? Moving beyond the variable source area concept of rainfall-runoff response. Hydrol. Process. 17(9), 1869–1875 (2003)

    Article  Google Scholar 

  • K.J. McGuire, J.J. McDonnell, Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities. Water Resour. Res. 46, W10543 (2010)

    Article  Google Scholar 

  • K.J. McGuire, D.R. DeWalle, W.J. Gburek, Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. J. Hydrol. 261, 132–149 (2002)

    Article  CAS  Google Scholar 

  • K.J. McGuire, J.J. McDonnell, M. Weiler, C. Kendall, B.L. McGlynn, J.M. Welker, J. Seibert, The role of topography on catchment-scale water residence time. Water Resour. Res. 41, 1-14 (2005)

    Google Scholar 

  • J.C. McIntosh, C. Schaumberg, J. Perdrial, A. Harpold, A.V. Ortega, C. Rasmussen, D. Vinson, X. Zapata-Rios, P.D. Brooks, T. Meixner, J. Pelletier, L. Derry, J. Chorover, Geochemical evolution of the critical zone across variable time scales informs concentration-discharge relationships: Jemez River Basin Critical Zone Observatory. Water Resour. Res. 53, 4169–4196 (2017)

    Article  CAS  Google Scholar 

  • J.P. McNamara, D. Chandler, M. Seyfried, S. Achet, Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrol. Process. 19(20), 4023–4038 (2005)

    Article  Google Scholar 

  • A.R. Mitchell, T.R. Ellsworth, B.D. Meek, Effect of root systems on preferential flow in swelling soil. Commun. Soil Sci. Plant Anal. 26(15–16), 2655–2666 (1995)

    Article  CAS  Google Scholar 

  • B.D. Newman, A.R. Campbell, B.P. Wilcox, Lateral subsurface flow pathways in a semiarid ponderosa pine hillslope. Water Resour. Res. 34(12), 3485–3496 (1998)

    Article  Google Scholar 

  • S. Noguchi, Y. Tsuboyamaa, R.C. Sidle, I. Hosoda, Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci. Soc. Am. J. 63(5), 1413–1423 (1999)

    Article  CAS  Google Scholar 

  • R.A. Overmeeren, S.V. Sariowan, J.C. Gehrels, Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites. J. Hydrol. 197(1), 316–338 (1997)

    Article  Google Scholar 

  • R.A. Payn, M.N. Gooseff, B.L. McGlynn, K.E. Bencala, S.M. Wondzell, Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession. Water Resour. Res. 48, W04519 (2012)

    Article  Google Scholar 

  • A. Pcovich, in Ecosystem Processes, ed. by M. G. Anderson (Wiley, Hoboken, 2005), pp. 1535–1537

    Google Scholar 

  • D. Penna, H.J. Tromp-Van Meerveld, A. Gobbi, M. Borga, G.D. Fontana, The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 689–702 (2011)

    Article  Google Scholar 

  • A. Pierret, Y. Capowiez, C.J. Moran, A. Kretzschmar, X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma 90(3–4), 307–326 (1999)

    Article  Google Scholar 

  • A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran, 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis. Geoderma 106(3–4), 247–271 (2002)

    Article  Google Scholar 

  • J. Poisson, M. Chouteau, M. Aubertin, D. Campos, Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J. Appl. Geophys. 67(2), 179–192 (2009)

    Article  Google Scholar 

  • F. Rezanezhad, H.J. Vogel, K. Roth, Experimental study of fingered flow through initially dry sand. Hydrol. Earth Syst. Sci. Discuss. 3(4), 2595–2620 (2006)

    Article  Google Scholar 

  • D.A. Robinson, I. Lebron, B. Kocar, K. Phan, M. Sampson, N. Crook, S. Fendorf, Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: an aid to interpreting hydrological and geochemical processes. Water Resour. Res. 45, W00D32 (2009)

    Article  CAS  Google Scholar 

  • S. Rudolph, J. Kruka, C. Hebela, M. Alia, M. Herbsta, C. Montzkaa, S. Pätzoldb, D.A. Robinsonc, H. Vereeckena, L. Weihermüllera, Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 241–242, 262–271 (2015)

    Article  Google Scholar 

  • M.D. Sherlock, J.J. McDonnell, A new tool for hillslope hydrologists: spatially distributed groundwater level and soilwater content measured using electromagnetic induction. Hydrol. Process. 17(10), 1965–1977 (2003)

    Article  Google Scholar 

  • R.C. Sidle, S. Noguchi, Y. Tsuboyama, K. Laursen, A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol. Process. 15(10), 1675–1692 (2001)

    Article  Google Scholar 

  • V.P. Singh, Kinematic wave modelling in water resources: a historical perspective. Hydrol. Process. 15(4), 671–706 (2001)

    Article  Google Scholar 

  • P.G. Sloan, I.D. Moore, Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resour. Res. 20(12), 1815–1822 (1984)

    Article  Google Scholar 

  • J.L. Starr, H.C. Deroo, C.R. Frink, J.Y. Parlange, Leaching characteristics of a layered field soil. Soil Sci. Soc. Am. J. 42(3), 386–391 (1978)

    Article  CAS  Google Scholar 

  • T.S. Steenhuis, J.Y. Parlange, M.S. Andreini, A numerical-model for preferential solute movement in structured soils. Geoderma 46(1–3), 193–208 (1990)

    Article  Google Scholar 

  • M. H. Stuckey, Low flow, base flow, and mean flow regression equations for Pennsylvania streams. US Geological Survey Scientific Investigations Report 2006-5130 (2006)

    Google Scholar 

  • D. G. Tarboton (ed.), Rainfall-Runoff Processes (Utah State University, Lohan, 2003)

    Google Scholar 

  • H.J. Tromp-van Meerveld, J.J. McDonnell, Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope. Water Resour. Res. 42, W02410 (2006a)

    Google Scholar 

  • H.J. Tromp-van Meerveld, J.J. McDonnell, Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res. 42, W024112 (2006b)

    Google Scholar 

  • D.J. Turton, E.L. Miller, Subsurface flow responses of a small forested catchment in the Ouachita mountains. Hydrol. Process. 6, 111–125 (1992)

    Article  Google Scholar 

  • J. Vanderborght, M. Vanclooster, A. Timmerman, P. Seuntjens, D. Mallants, D.J. Kim, D. Jacques, L. Hubrechts, C. Gonzalez, J. Feyen, J. Diels, J. Deckers, Overview of inert tracer experiments in key Belgian soil types: Relation between transport and soil morphological and hydraulic properties. Water Resour. Res. 37(12), 2873–2888 (2001)

    Article  Google Scholar 

  • R.W. Vervoort, D.E. Radcliffe, L.T. West, Soil structure development and preferential solute flow. Water Resour. Res. 35(4), 913–928 (1999)

    Article  Google Scholar 

  • A.S. Ward, M.N. Gooseff, K. Singha, Imaging hyporheic zone solute transport using electrical resistivity. Hydrol. Process. 24(7), 948–953 (2010)

    Article  CAS  Google Scholar 

  • M. Weiler and F. Naef, An experimental tracer study of the role of macropores infiltration in grassland soils. Hydrol. Process. 17, 477 (2003)

    Google Scholar 

  • M. Weiler, J. J McDonnell, I. Tromp-Van Meerveld, T. Uchida, in Subsurface Stormflow, ed. by M. G. Anderson (Wiley, Hoboken, 2005), pp. 1720–1729

    Google Scholar 

  • S. Weill, A. Mazzia, M. Putti, C. Paniconi, Coupling water flow and solute transport into a physically-based surface-subsurface hydrological model. Adv. Water Resour. 34(1), 128–136 (2011)

    Article  CAS  Google Scholar 

  • R.Z. Whipkey, Subsurface stormflow from forested slopes. Int. Assoc. Sci. Hydrol. Bull. 10(2), 74–85 (1965)

    Article  Google Scholar 

  • B.P. Wilcox, B.D. Newman, D. Brandes, D.W. Davenport, K. Reid, Runoff from a semiarid ponderosa pine hillslope in New Mexico. Water Resour. Res. 33(10), 2301–2314 (1997)

    Article  Google Scholar 

  • T.C. Winter, The role of ground water in generating streamflow in headwater areas and in maintaining base flow. J. Am. Water Resour. Assoc. 43(1), 15–25 (2007)

    Article  Google Scholar 

  • WMO Rep, International Glossary of Hydrology, World Meteorological Organization, Geneva (2012), p. 336

    Google Scholar 

  • R.E. Yoder, R.S. Freeland, J.T. Ammons, L.L. Leonard, Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. J. Appl. Geophys. 47(3–4), 251–259 (2001)

    Article  Google Scholar 

  • E. Zehe, H. Fluhler, Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. J. Hydrol. 247(1–2), 100–115 (2001)

    Article  CAS  Google Scholar 

  • Q. Zhu, H. Lin, J. Doolittle, Repeated electromagnetic induction surveys for improved soil mapping in an agricultural landscape. Soil Sci. Soc. Am. J. 74(5), 1763 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the National Natural Science Foundation of China (NSFC 41730854 and 91425301) and the PCSIRT (IRT_15R06), and projects were supported by the State Key Laboratory of Earth Surface Processes and Resource Ecology and by Ten Thousand Talent Program for leading young scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, GR., Li, XY. (2018). Subsurface Flow. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Subsurface Flow
    Published:
    13 August 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_9-2

  2. Original

    Subsurface Flow
    Published:
    17 May 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_9-1