Skip to main content

CHAMP-, GRACE-, GOCE-Satellite Projects

Encyclopedia of Geodesy
  • 1236 Accesses

Definition

The launch of the first generation of satellite gravity missions, i.e., CHAMP (Challenging Minisatellite Payload; Reigber et al., 2002), GRACE (Gravity Recovery and Climate Experiment; Tapley et al., 2004), and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer; Drinkwater et al., 2003), has revolutionized our knowledge of the global Earth’s gravity field and its temporal changes, which are related to geophysical processes of mass redistribution on our planet. Since they are the only measurement technique which can directly observe mass changes on a global scale, they are a unique observational system for monitoring mass transport in the Earth system.

Still 15 years ago, this knowledge was limited (a) spatially, mainly due to a very heterogeneous distribution and quality of terrestrial gravity observations, and (b) temporally, due to a lack of repeat measurements. The great advantage of satellite-based techniques is to observe the Earth’s gravity field on a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Andersen, O., and Knudsen, P., 2013. The DTU13 MSS New global Mean sea surface from 20 years of satellite altimetry. Poster presented at the IAG Scientific Assembly 2013, Potsdam, September 1–6, 2013.

    Google Scholar 

  • Bingham, R.J., Knudsen, P., Andersen, O., and Pail, R., 2011. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophysical Research Letters, 38, EID L01606, doi:10.1029/2010GL045633. American Geophysical Union.

    Google Scholar 

  • Bock, H., Jäggi, A., Meyer, U., Visser, P., van den IJssel, J., van Helleputte, T., Heinze, M., and Hugentobler, U., 2011. GPS-derived orbits for the GOCE satellite. Journal of Geodesy, 85(11), 807–818, doi:10.1007/s00190-011-0484-9.

    Article  Google Scholar 

  • Braitenberg, C., 2014. Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation 35, 88–95, doi:10.1016/j.jag.2014.01.013.

    Google Scholar 

  • Brockmann, J. M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., and Schuh, W.-D., 2014. EGM_TIM_RL05: an independent Geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, doi:10.1002/2014GL061904. Wiley.

    Google Scholar 

  • Bruinsma, S. L., Foerste, C., Abrikosov, O., Marty, J. C., Rio, M. H., Mulet, S., and Bonvalot, S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40, 3607–3612, doi:10.1002/grl.50716.

    Article  Google Scholar 

  • Chambers, D. P., Wahr, J., and Nerem, R. S., 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31, L13310, doi:10.1029/2004GL020461.

    Article  Google Scholar 

  • Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., and Neumayer, K.-H., 2012. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005. (Scientific Technical Report STR12/02 – data, rev edn, January 2013), Potsdam, p. 21. doi: 10.2312/GFZ.b103-1202-25.

    Google Scholar 

  • Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., and Popescu, A., 2003. GOCE: ESA’s first Earth explorer core mission. In Beutler, G., Drinkwater, M. R., Rummel, R., and von Steiger, R. (eds.), Earth Gravity Field from Space – From Sensors to Earth Sciences. Dordrecht: Kluwer. Space Sciences Series of ISSI, Vol. 17, pp. 419–432. ISBN 1-4020-1408-2.

    Chapter  Google Scholar 

  • Han, S.-C., Sauber, J., and Riva, R., 2011. Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38, L24312, doi:10.1029/2011GL049975.

    Google Scholar 

  • Hosse, M., Pail, R., Horwath, M., Holzrichter, N., and Gutknecht, B. D., 2014. Combined regional gravity model of the Andean convergent subduction zone and its application to crustal density modelling in active plate margins. Surveys in Geophysics, 35(6), 1393–1415, doi:10.1007/s10712-014-9307-x.

    Article  Google Scholar 

  • Knudsen, P., Bingham, R., Andersen, O., and Rio, M.-H., 2011. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85(11), 861–879, doi:10.1007/s00190-011-0485-8.

    Article  Google Scholar 

  • Mayer-Gürr, T., Zehentner, N., Klinger, B., and Kvas, A., 2014. ITSG-Grace 2014: a new GRACE gravity field release computed in Graz. Presented at GRACE Science Team Meeting (GSTM), Potsdam, September 29, 2014.

    Google Scholar 

  • Pail, R., 2014. It’s all about statistics: global gravity field modeling from GOCE and complementary data. In Handbook of Geomathematics, pp. 1–24, doi: 10.1007/978-3-642-27793-1_73-3.

    Google Scholar 

  • Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W.-D., Brockmann, J.M., Krasbutter, I., Höck, E., and Fecher, T., 2010. Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In Lacoste-Francis, H. (ed.), Proceedings of the ESA Living Planet Symposium, ESA Publication SP-686, ESA/ESTEC, Noordwijk.

    Google Scholar 

  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J. M., Abrikosov, O., Veicherts, M., Fecher, T., Mayrhofer, R., Krasbutter, I., Sansó, F., and Tscherning, C. C., 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11), 819–843, doi:10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Prange, L., 2011. Global Gravity Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP. PhD Thesis, Geodätisch-geophysikalische Arbeiten in der Schweiz, Vol. 81. http://www.sgc.ethz.ch/sgc-volumes/sgk-81.pdf

  • Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.M., Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., and Perossanz, F., 2002. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, 29(14), doi:http://dx.doi.org/10.1029/2002GL015064.

    Google Scholar 

  • Rummel, R., 2013. Height unification using GOCE. Journal of Geodetic Science, 2(4), 355–362, doi:10.2478/v10156-011-0047-2.

    Google Scholar 

  • Sampietro, D., Reguzzoni, M., and Braitenberg, C., 2014. The GOCE estimated Moho beneath the Tibetan plateau and Himalaya. In Rizos, C., and Willis, P. (eds.), Earth on the Edge: Science for a Sustainable Planet. Dordrecht: Springer. International Association of Geodesy Symposia, Vol. 139, pp. 391–397, doi:10.1007/978-3-642-37222-3_52.

    Chapter  Google Scholar 

  • Schlie, J., Murböck, M., and Pail, R., 2015. Feasibility study of a future satellite gravity mission using GEO-LEO line-of-sight observations. In Marti, U. (ed.), Gravity, Geoid and Height Systems. Dordrecht: Springer. International Association of Geodesy Symposia, Vol. 141, doi:10.1007/978-3-319-10837-7_16.

    Google Scholar 

  • Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sandberg Sorensen, L., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J., 2012. A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189, doi:10.1126/science.1228102.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31(9), L09607, doi:http://dx.doi.org/10.1029/2004GL019920. American Geophysical Union.

    Google Scholar 

  • Tiwari, V. M., Wahr, J., and Swenson, S., 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36, L18401, doi:10.1029/2009GL039401.

    Article  Google Scholar 

  • van der Meijde, M., Julià, J., and Assumpção, M., 2013. Gravity derived Moho for South America. Tectonophysics, 609, 456–467, doi:http://dx.doi.org/10.1016/j.tecto.2013.03.023.

    Google Scholar 

  • Velicogna, I., Sutterley, T. C., and van den Broeke, M. R., 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, doi:10.1002/2014GL06105.

    Google Scholar 

  • Weigelt, M., van Dam, T., Jäggi, A., Prange, L., Tourian, M. J., Keller, W., and Sneeuw, N., 2013. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. Journal of Geophysical Research, Solid Earth, 118(7), 3848–3859, doi:10.1002/jgrb.50283.

    Article  Google Scholar 

  • Werth, S., Güntner, A., Schmidt, R., and Kusche, J., 2009. Evaluation of GRACE filter tools from a hydrological perspective. Geophysical Journal International, 179(3), 1499–1515, doi:10.1111/j.1365-246X.2009.04355.x.

    Article  Google Scholar 

  • Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke, K., 2001. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophysical Research Letters, 28(17), 3263–3266, doi:10.1029/2001GL013117.

    Article  Google Scholar 

  • Wiese, D., Folkner, W., and Nerem, R., 2009. Alternative mission architectures for a gravity recovery satellite mission. Journal of Geodesy, 83, 569–581, doi:http://dx.doi.org/10.4236/ijg.2014.53027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Pail, R. (2014). CHAMP-, GRACE-, GOCE-Satellite Projects. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Gravity Missions: CHAMP, GRACE, GRACE-FO, and GOCE, Satellite Projects
    Published:
    17 March 2023

    DOI: https://doi.org/10.1007/978-3-319-02370-0_29-2

  2. Original

    CHAMP-, GRACE-, GOCE-Satellite Projects
    Published:
    21 May 2015

    DOI: https://doi.org/10.1007/978-3-319-02370-0_29-1