Skip to main content

Space Gravity Missions: CHAMP, GRACE, GRACE-FO, and GOCE, Satellite Projects

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Geodesy

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 133 Accesses

Definition

The launch of satellite gravity missions, i.e., CHAMP (Challenging Minisatellite Payload; Reigber et al. 2002), GRACE (Gravity Recovery Experiment; Tapley et al. 2004), GOCE (Gravity Field and Steady-State Ocean Circulation Explorer; Drinkwater et al. 2003), and GRACE-FO (GRACE-Follow On; Landerer et al. 2020) have revolutionized our knowledge of the global Earth’s gravity field and its temporal changes, which are related to geophysical processes of mass redistribution on our planet (Fig. 1). Since they are the only measurement technique, which can directly observe mass changes on a global scale, they are a unique observational system for monitoring mass transport in the Earth system.

Still 20 years ago, this knowledge was limited (a) spatially, mainly due to a very heterogeneous distribution and quality of terrestrial gravity observations and (b) temporally, due to a lack of repeat measurements. The great advantage of satellite-based techniques is to observe the Earth’s...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Abich, K., Abramovici, A., Amparan, B. et al., 2019. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Physical Review Letters, 123, 031101. https://doi.org/10.1103/PhysRevLett.123.031101.

  • Andersen, O., Knudsen, P., 2013. The DTU13 MSS New global Mean sea surface from 20 years of satellite altimetry. Poster presented at the IAG Scientific Assembly 2013, Potsdam, 1–6 September 2013.

    Google Scholar 

  • Bender, P.L., Wiese, D.N., Nerem, R.S., 2008. A Possible Dual-GRACE Mission With 90 Degree And 63 Degree Inclination Orbits. Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies. Noordwijk, Netherlands, 59–64.

    Google Scholar 

  • Bingham, R.J., Knudsen, P., Andersen, O., Pail, R., 2011. An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophysical Research Letters, 38, EID L01606, American Geophysical Union, https://doi.org/10.1029/2010GL045633.

  • Bock, H., Jäggi, A., Meyer, U., Visser, P., van den IJssel, J., van Helleputte, T., Heinze, M., Hugentobler, U., 2011. GPS-derived orbits for the GOCE satellite. Journal of Geodesy, 85(11), 807–818, https://doi.org/10.1007/s00190-011-0484-9.

    Article  Google Scholar 

  • Braitenberg, C., 2015. Exploration of tectonic structures with GOCE in Africa and across-continents. International Journal of Applied Earth Observation and Geoinformation, 01/2014, 10.1016/j.jag.2014.01.013.

    Google Scholar 

  • Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.-D., 2014. EGM_TIM_RL05: An independent Geoid with Centimeter Accuracy purely based on the GOCE Mission. Geophysical Research Letters, Wiley, https://doi.org/10.1002/2014GL061904.

  • Bruinsma, S.L., Foerste, C., Abrikosov, O., Marty, J.C., Rio, M.H., Mulet, S., Bonvalot, S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40, 3607-3612, https://doi.org/10.1002/grl.50716.

    Article  Google Scholar 

  • Cazenave, A., Hamlington, B., Horwath, M., Barletta, V. R., Benveniste, J., Chambers, D., Döll, P. Hogg, Anna E., Legeais, J. F., Merrifield, M., Meyssignac, B., Mitchum, G., Nerem, S., Pail, R., Palanisamy, H., Paul, F. von Schuckmann, K., Thompson, P., 2019. Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era. Frontiers in Marine Science, 6, 582. https://doi.org/10.3389/fmars.2019.00582.

    Article  Google Scholar 

  • Dahle, C., Flechtner, F., Gruber, C., König, D., König, R., Michalak, G., Neumayer, K.-H., 2012. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005, (Scientific Technical Report STR12/02 – Data, Revised Edition, January 2013), Potsdam, 21 p., https://doi.org/10.2312/GFZ.b103-1202-25.

  • Daras, I., Pail, R., 2017. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. JGR Solid Earth, 122 (9), 7343-7362, https://doi.org/10.1002/2017JB014250.

    Article  Google Scholar 

  • Drinkwater, M.R., Floberghagen, R., Haagmans, R., Muzi, D., Popescu, A., 2003. GOCE: ESA’s first Earth Explorer Core mission. In Beutler, G., Drinkwater, M.R., Rummel, R., von Steiger, R. (eds.), Earth Gravity Field from Space – From Sensors toEarth Sciences, Space Sciences Series of ISSI, vol. 17. Kluwer Academic Publishers, Dordrecht, The Netherlands, S. 419–432, ISBN: 1-4020-1408-2.

    Google Scholar 

  • Götze, H.-J., Pail, R., 2018. Insights from recent gravity satellite missions in the density structure of continental margins – With focus on the passive margins of the South Atlantic. Gondwana Research, 53 (Supplement C), 285 – 308, https://doi.org/10.1016/j.gr.2017.04.015.

    Article  Google Scholar 

  • Han, S.-C., Sauber, J., Riva, R., 2011. Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake, Geophysical Research Letters, 38, L24312, https://doi.org/10.1029/2011GL049975.

    Article  Google Scholar 

  • Hauk, M., Pail, R., 2019. Gravity field recovery by high-precision high-low inter-satellite links. Remote Sensing, 11(5), 537; https://doi.org/10.3390/rs11050537.

    Article  Google Scholar 

  • Hosse, M., Pail, R., Horwath, M., Holzrichter, N., Gutknecht, B.D., 2014. Combined regional gravity model of the Andean convergent subduction zone and its application to crustal density modelling in active plate margins. Surveys in Geophysics, 2014(6), 1393-1415, Springer, : https://doi.org/10.1007/s10712-014-9307-x.

  • Ihde, J., Sánchez, L., Barzaghi, R., Drewes, H., Foerste, C., Gruber, T., Liebsch, G., Marti, U., Pail, R., Sideris, M, 2017. Definition and Proposed Realization of the International Height Reference System (IHRS). Surveys in Geophysics, 38, 1-22. https://doi.org/10.1007/s10712-017-9409-3.

  • Knudsen, P., Bingham, R., Andersen, O., Rio, M.-H., 2011. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85(11), 861–879, https://doi.org/10.1007/s00190-011-0485-8.

    Article  Google Scholar 

  • Landerer, F.W., Flechtner, F., Save, H., Webb, F.H., Bandikova, T., Bertiger, W.I., Bettadpur, S.V., Byun, S., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G.L.H., Loomis, B.D., McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S., Strekalov, D., Tamisiea, M.E., Wang, F., Watkins, M.M., Wen, H., Wiese, D.N., Yuan, D., 2020. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophysical Research Letters, 47, 12, https://doi.org/10.1029/2020GL088306.

    Article  Google Scholar 

  • Mayer-Gürr, T., Zehentner, N., Klinger, B., Kvas, A., 2014. ITSG-Grace2014: a new GRACE gravity field release computed in Graz. Presented at GRACE Science Team Meeting (GSTM), Potsdam, 29.09.2014.

    Google Scholar 

  • Massotti, L., Siemes, C., March, G., Haagmans, R., Silvestrin, P., 2021. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. Remote Sensing, 13(19), 3935, https://doi.org/10.3390/rs13193935.

    Article  Google Scholar 

  • Pail, R., 2013. It’s All About Statistics: Global Gravity Field Modeling from GOCE and Complementary Data. Handbook of Geomathematics, 1–24, https://doi.org/10.1007/978-3-642-27793-1_73-3.

  • Pail, R., Bamber, J, Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T. Güntner, A., Heinzel, G., Horwath, M, Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., Wouters, B., 2019. Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 9(1), 48–58, https://doi.org/10.1515/jogs-2019-0006.

    Article  Google Scholar 

  • Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B., 2015. Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36(6), 743-772, https://doi.org/10.1007/s10712-015-9348-9.

    Article  Google Scholar 

  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brockmann, J.M., Abrikosov, O., Veicherts, M., Fecher T., Mayrhofer, R., Krasbutter,, I., Sansó, F., Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11), 819–843, Springer, https://doi.org/10.1007/s00190-011-0467-x.

  • Pail, R., Goiginger, H., Mayrhofer, R., Schuh, W.-D., Brockmann, J.M., Krasbutter, I., Höck, E., Fecher, T., 2010. Global gravity field model derived from orbit and gradiometry data applying the time-wise method. In Lacoste-Francis, H. (ed.) Proceedings of the ESA Living Planet Symposium, ESA Publication SP-686, ESA/ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Prange, L., 2011. Global Gravity Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP. PhD Thesis, Geodätisch-geophysikalische Arbeiten in der Schweiz, vol. 81. http://www.sgc.ethz.ch/sgc-volumes/sgk-81.pdf.

  • Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J.-M., Koenig, R., Loyer, S., Neumayer, H., Marty, J.C., Barthelmes, F., Perossanz, F., 2002. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters, 29, 14, https://doi.org/10.1029/2002GL015064.

    Article  Google Scholar 

  • Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., Lo, M.-H., 2018. Emerging trends in global freshwater availability. Nature, 557, 651–659, https://doi.org/10.1038/s41586-018-0123-1.

    Article  Google Scholar 

  • Rummel, R., 2013. Height unification using GOCE; Journal of Geodetic Science. Vol. 2012, Nr. 2, Heft 4, 355-362, Versita, https://doi.org/10.2478/v10156-011-0047-2.

  • Sampietro, D., Reguzzoni, M., Braitenberg, C., 2014. The GOCE Estimated Moho Beneath the Tibetan Plateau and Himalaya. In Rizos, C., Willis, P. (eds.), Earth on the Edge: Science for a Sustainable Planet, International Association of Geodesy Symposia volume 139, 391-397, https://doi.org/10.1007/978-3-642-37222-3_52.

  • Sánchez, L., Ågren, J., Huang, J., Wang, Y.M., Mäkinen, J., Pail, R., Barzaghi, R., Vergos, G.S., Ahlgren, K., Liu, Q., 2021. Strategy for the realisation of the International Height Reference System (IHRS). Journal of Geodesy, 95, 33, https://doi.org/10.1007/s00190-021-01481-0

    Article  Google Scholar 

  • Shepherd, A., Ivins, E. R., Geruo, B. et al., 2012. A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338(6111), 1183-1189, https://doi.org/10.1126/science.1228102.

    Article  Google Scholar 

  • Shepherd, A., Ivins, E., Rignot, E. et al., 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y.

    Article  Google Scholar 

  • Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31(9), L09607, AmericanGeophysical Union, https://doi.org/10.1029/2004GL019920.

    Chapter  Google Scholar 

  • The IMBIE Team, Shepherd, A., Ivins, E. et al., 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2.

    Article  Google Scholar 

  • Thomas, B., Famiglietti, J., Landerer, F., Wiese, D., Molotch, N., Argus, D., 2017. GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment. 198, 384-392, https://doi.org/10.1016/j.rse.2017.06.026.

    Article  Google Scholar 

  • Tiwari, V.M., Wahr, J., Swenson, S., 2009. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36, L18401, https://doi.org/10.1029/2009GL039401.

    Article  Google Scholar 

  • van der Meijde, M., Julià, J., Assumpção, M., 2013. Gravity derived Moho for South America. Tectonophysics, 609, 456-467, https://doi.org/10.1016/j.tecto.2013.03.023.

    Article  Google Scholar 

  • Weigelt, M., van Dam, T., Jäggi, A., Prange, L., Tourian, M.J., Keller, W., Sneeuw, N., 2013. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. Journal of Geophysical Research: Solid Earth, 118:7, 3848–3859, https://doi.org/10.1002/jgrb.50283.

    Article  Google Scholar 

  • Werth, S., Güntner, A., Schmidt, R., Kusche, J., 2009. Evaluation of GRACE filter tools from a hydrological perspective. Geophysical Journal International, 179(3), 1499–1515, https://doi.org/10.1111/j.1365-246X.2009.04355.x.

    Article  Google Scholar 

  • Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T.K., Melbourne, W.G., Hocke, K., 2001. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophysical Research Letters, 28(17), 3263–3266, https://doi.org/10.1029/2001GL013117.

    Article  Google Scholar 

  • Wiese, D., Folkner, W. and Nerem, R., 2009. Alternative Mission Architectures for a Gravity Recovery Satellite Mission. Journal of Geodesy, 83, 569-581, https://doi.org/10.4236/ijg.2014.53027.

    Article  Google Scholar 

  • Wouters, B., Gardner, A.S., Moholdt, G., 2019. Global glacier mass loss during the GRACE satellite mission (2002-2016). Frontiers in Earth Science, 7(96), https://doi.org/10.3389/feart.2019.00096.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pail, R. (2023). Space Gravity Missions: CHAMP, GRACE, GRACE-FO, and GOCE, Satellite Projects. In: Sideris, M.G. (eds) Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_29-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02370-0

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Space Gravity Missions: CHAMP, GRACE, GRACE-FO, and GOCE, Satellite Projects
    Published:
    17 March 2023

    DOI: https://doi.org/10.1007/978-3-319-02370-0_29-2

  2. Original

    CHAMP-, GRACE-, GOCE-Satellite Projects
    Published:
    21 May 2015

    DOI: https://doi.org/10.1007/978-3-319-02370-0_29-1